Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\)
\(\Rightarrow\frac{bcx+acy+abz}{abc}=0\)
\(\Rightarrow bcx+acy+abz=0\)
Lại có:\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{bcx+acy+abz}{xyz}=4\)(bình phương hai vế)
\(\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=4\)(Vì \(bcx+acy+abz=0\))
Từ (1) \(\Rightarrow bcx+acy+abz=0\)
Gọi \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\left(2\right)\)
Từ (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{ab}{xy}+\frac{ac}{xz}+\frac{bc}{yz}\right)=0\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=4-\left(\frac{abz+acy+bcx}{xyz}\right)\)
\(=4\)
\(b,\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Từ \(a+b+c=0\Rightarrow a+b=-c\Rightarrow a^2+b^2-c^2=-2ab\)
Tương tự \(b^2+c^2-a^2=-2bc\)và \(c^2+a^2-b^2=-2ac\)
\(\Rightarrow\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=\frac{1}{-2}+\frac{1}{-2}+\frac{1}{-2}\)
\(=-\frac{3}{2}\)
a) \(A=\frac{a^2}{cb}+\frac{b^2}{ca}+\frac{c^2}{ab}\)
\(A=\frac{a^2.a+b^2.b+c^2.c}{abc}\)
\(A=\frac{a^3+b^3+c^3}{abc}\left(1\right)\)
Ta lại có: \(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(-c\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(2\right)\)
Lấy (2) thay vào (1), ta được:
\(\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
a) cho a+b+c=0a+b+c=0 và abc khác 0 Tính a2(a2−b2−c2)+b2(b2−c2−a2)+c2(c2−b2−a2)
b) B mình k biết
a, \(M=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}\)
\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(=\frac{1+b+bc}{1+b+bc}=1\)
\(\Rightarrow M=1\)
http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/
Ta có: \(a+b+c=0\)
\(\Rightarrow1\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=-2ab+c^2\\b^2+c^2=-2bc+a^2\\c^2+a^2=-2ac+b^2\end{cases}}\)
\(\Rightarrow1A=\frac{a^2}{a^2+2bc-a^2}+\frac{b^2}{b^2+2ac-b^2}+\frac{c^2}{c^2+2ab-c^2}\)
\(=\frac{a^3+b^3+c^3}{2abc}=\frac{a^3+b^3+c^3-3abc+3abc}{2abc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)
\(=\frac{3}{2}\)
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2-c^2=-2c^2-2bc-2ac-2ab\)
\(\Leftrightarrow a^2+b^2-c^2=-\left[2c.\left(c+b\right)+2a.\left(c+b\right)\right]\)
\(\Leftrightarrow a^2+b^2-c^2=-2.\left(a+c\right)\left(c+b\right)\)
Tương tự \(b^2+c^2-a^2=-2.\left(a+b\right)\left(a+c\right)\)
\(c^2+a^2-b^2=-2.\left(b+c\right)\left(b+a\right)\)
Đặt \(A=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=-\frac{1}{2}.\left[\frac{1}{\left(b+c\right)\left(a+c\right)}+\frac{1}{\left(a+b\right)\left(a+c\right)}+\frac{1}{\left(b+c\right)\left(a+b\right)}\right]\)
\(=-\frac{1}{2}.\frac{a+b+b+c+a+c}{\left(b+c\right).\left(a+c\right)\left(a+b\right)}=-\frac{1}{2}.\frac{2.\left(a+b+c\right)}{\left(b+c\right).\left(a+c\right).\left(a+b\right)}=0\)
câu 1 là :từ a/x + b/y + c/z =0 suy ra (ayz+bxz+cxy)/xyz =0 suy ra ayz+bxz+cxy=0 (1)
vì x/a + y/b + z/c =1 (gt) suy ra (x/a + y/b + z/c )^2 = 1^2 . suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2(xy/ab + yz/bc + xz/ac) =1
suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 + 2[(ayz+bxz+cxy)/abc = 1 (2)
Từ (1) và (2) suy ra x^2/a^2 + y^2/b^2 + z^2/c^2 =1 (đpcm)
Ta có :
\(a+b+c=0\Rightarrow b+c=-a\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+2bc+c^2=a^2\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
Mặt khác \(\left(b+c\right)^2=\left(-a\right)^2\Rightarrow b^3+3bc\left(b+c\right)+c^3=-a^3\Rightarrow a^3+b^3+c^3=-3bc\left(b+c\right)\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow P=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ba}=\frac{a^3+b^3+c^3}{2abc}\)
\(=\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy P = 3/2
P=3/2