≥...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Dùng bất đẳng thức phụ:(x+y)2≥4xy

Ta có (a+b)2≥4ab ;(c+b)2≥4cb;(a+c)2≥4ac

⇒(a+b)2(b+c)2(a+c)2≥64(abc)2

do đó (a+b)(b+c)(c+a)8abc

Dấu “=” xảy ra khi a = b = c



7 tháng 2 2019

AD BĐT cô si cho số không âm

(a+b)(a+c)(b+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}\)=8\(\sqrt{\left(abc\right)^2}\)=8abc

a : b +C _4= b + a

19 tháng 5 2019

Em có cách này,anh check lại nhé!

Theo nguyên lí Dirichlet,trong ba số (a - 1) ; (b - 1); (c - 1) tồn tại hai số có tích không âm.

Không mất tính tổng quát,giả sử \(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1\)

\(\Rightarrow abc\ge ac+bc-c\)

Suy ra \(VT\ge a^2+b^2+\left(c^2+ac+bc-c\right)\)

\(=a^2+b^2+c\left(a+b+c-1\right)=a^2+b^2+2c\)

Ta cần chứng minh \(a^2+b^2+2c\ge4\)

Thật vậy,BĐT \(\Leftrightarrow\left(a^2+1\right)+\left(b^2+1\right)+2c\ge6\)

Áp dụng BĐT Cô si (AM-GM) ta được: \(VT\ge2\left(a+b+c\right)=2.3=6\)(Q.E.D)

15 tháng 6 2020

Giúp với,, TT

17 tháng 6 2020

Theo bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(\Sigma_{cyc}\frac{a}{\sqrt{a+b}}\right)^2=\)\(\left(\Sigma_{cyc}\sqrt{a\left(5a+b+9c\right)}.\sqrt{\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}}\right)^2\)

\(\le\left(\Sigma_{cyc}a\left(5a+b+9c\right)\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

\(=5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

Đến đây, ta cần chứng minh \(5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{25}{16}\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{5}{16}\)

Thật vậy, ta có: \(\frac{5}{16}-\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\)

\(\Leftrightarrow\frac{\sum_{cyc}ab(a+b)(a+9b)(a-3b)^2+243\sum_{cyc}a^3b^2c+835\sum_{cyc}a^3bc^2+232\sum_{cyc}a^4bc+1230a^2b^2c^2}{16(a+b)(b+c) (c+a)\prod_{cyc}(5a+b+9c)}\ge 0\) (đúng)

(Minh gõ bằng Latex, bạn chịu khó vô trang cá nhân của mình nhé, ngày 17/6 nha)

Đẳng thức xảy ra khi \(a=3b;c=0\)

17 tháng 8 2020

\(-\frac{1}{\sqrt{3}}\le\sqrt{ab+bc+ca}\le\frac{1}{\sqrt{3}}\) chứ ạ?

NV
21 tháng 8 2020

- Nếu cả 3 số đều ko âm thì \(abc\le\frac{1}{27}\Rightarrow VT< 0\) BĐT luôn đúng

- Nếu 2 trong 3 số không âm thì \(abc\le0\Rightarrow VT< 0\) BĐT luôn đúng

Do đó ta chỉ cần chứng minh trong trường hợp 2 số âm, 1 số dương

Không mất tính tổng quát, giả sử \(\left\{{}\begin{matrix}c>0\\a;b< 0\end{matrix}\right.\) đặt \(\left\{{}\begin{matrix}a=-p\\b=-q\end{matrix}\right.\) \(\Rightarrow p;q;c>0\)

\(\Rightarrow c-p-q=1\Rightarrow c=p+q+1\)

BĐT trở thành: \(8pq\left(p+q\right)-8\le\left[\left(p+q\right)^2+p+q-pq-1\right]^2\)

Đặt \(\left\{{}\begin{matrix}p+q=x>0\\pq=y>0\end{matrix}\right.\) \(\Rightarrow x^2\ge4y\)

Ta cần c/m: \(8y\left(x+1\right)-8\le\left(x^2+x-y-1\right)^2\)

\(\Leftrightarrow x^4+2x^3-2x^2y-x^2-10xy-2x+y^2-6y+9\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2y-2x^2-10xy-2x+8+\left(y-1\right)^2+\left(x^2-4y\right)\ge0\)

Do \(\left(y-1\right)^2+\left(x^2-4y\right)\ge0\) nên ta chỉ cần chứng minh:

\(x^4+2x^3-2x^2y-2x^2-10xy-2x+8\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2\left(\frac{x^2}{4}\right)-2x^2-10x\left(\frac{x^2}{4}\right)-2x+8\ge0\)

\(\Leftrightarrow x^4-x^3-4x^2-4x+16\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+3x+4\right)\ge0\) (luôn đúng với \(x>0\))

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Leftrightarrow p=q=1\) hay \(\left(a;b;c\right)=\left(-1;-1;3\right)\) và hoán vị

//Hơi trâu bò :(