\(a+b+c=0\) và \(a^2+b^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

a+b+c=0=> (a+b+c)2=0

=> a2+b2+c2 +2(ab+bc+ca)=0

=> 14+2(ab+bc+ca)=0 => ab+bc+ca=-7

(ab+bc+ca)2=a2b2 + b2c2 + c2a2 + 2abc(a+b+c)=a2b2 + b2c2 + c2a2=49 ( vì a+b+c=0)

Ta có a4 + b4 + c4= ( a2 + b2 + c2 )2 -2(a2b2 + b2c2 + c2a2)=142-2*49

Vậy 1 + a4 + b4 + c4 =1 + 142-2*49=99

15 tháng 2 2020

+) Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )

+) Lại có : \(a^2+b^2+c^2=2016\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)

\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)

Hay : \(A=-4040082\)

Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.

21 tháng 4 2017

Ta có:

\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)

\(=\left(-1005\right)^2-2abc.0=1005^2\)

\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=2010^2-1005^2=2.1005^2=2020050\)

31 tháng 7 2017

Ta có a + b+ c = 0 \(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc=0\)

\(\Rightarrow1+2\left(ab+ac+bc\right)=0\)( vì \(a^2+b^2+c^2=1\))

\(\Rightarrow ab+bc+ac=-\frac{1}{2}\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)

\(\Rightarrow a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2=\frac{1}{4}\)

Tới đây bạn phân tích nốt ra nhé :v

31 tháng 7 2017

\(a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=\frac{1}{4}\)

\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{1}{4}\left(a+b+c=0\right)\)(*)

Mặt khác : \(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)^2=1\)

\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c+2b^2c^2=1\)

\(\Rightarrow a^4+b^4+c^4+2\cdot\frac{1}{4}=1\)(theo *)

\(\Rightarrow a^4+b^4+c^4+\frac{1}{2}=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)

2 tháng 1 2020

\(\frac{2}{ab}-9=\frac{1}{c^2}\)\(\Rightarrow\frac{2}{ab}-\frac{1}{c^2}=9\)

Ta có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}-\frac{1}{c^2}\right)=3^2-9\)

\(\Rightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2.\frac{1}{a}.\frac{1}{b}+2.\frac{1}{b}.\frac{1}{c}+2.\frac{1}{c}.\frac{1}{a}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}-\frac{2}{ab}+\frac{1}{c^2}=0\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ac}+\frac{1}{c^2}=0\)

\(\Rightarrow\left(\frac{1}{a^2}+\frac{2}{ac}+\frac{1}{c^2}\right)+\left(\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}\right)=0\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{c}=0\\\frac{1}{b}+\frac{1}{c}=0\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{-1}{c}\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}+\frac{-1}{c}+\frac{1}{c}=3\)\(\Rightarrow\frac{-1}{c}=3\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=3\)\(\Rightarrow c=-\frac{1}{3}\)\(a=b=\frac{1}{3}\)

Lại có: \(P=\left(a+3b+c\right)^{2020}=\left(\frac{1}{3}+3.\frac{1}{3}+\frac{-1}{3}\right)^{2020}=1^{2020}=1\)

Các cao nhân giúp với!!!!!!!!!! Thanks for all

3 tháng 8 2020

Ta có:\(a+b+c\ne0\)vì nếu \(a+b+c=0\)thế vào giả thiết ta có:

\(\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=1\Leftrightarrow-3=1\)(vô lí)

Khi \(a+b+c\ne0\)ta có:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right).\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{a.\left(b+c\right)}{b+c}+\frac{b.\left(c+a\right)}{c+a}+\frac{b^2}{c+a}+\frac{c.\left(a+b\right)}{a+b}+\frac{c^2}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)\(\Rightarrow P=0\)

Học tốt