Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. bổ sung thêm +ab
Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab = a2 - ab + b2 + ab = a2 + b2
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\)
=> a3 + b3 + ab ≥ 1/2 ( đpcm )
Dấu "=" xảy ra <=> a = b = 1/2
2. nhìn căng đét làm sau :>
3. Theo bđt tam giác ta có : \(\hept{\begin{cases}a-b< c\\b-c< a\\c-a< b\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-b\right)^2< c^2\\\left(b-c\right)^2< a^2\\\left(c-a\right)^2< b^2\end{cases}}\)
Cộng vế với vế các bđt trên và thu gọn ta có đpcm
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra khi \(a=b\)
\(a^2+b^2+2=2\left(a+b\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}}\Leftrightarrow a=b=1\)
\(A=a^{2022}+b^{2022}=2\)
Bài 1 :
a, \(A=\frac{4x^2}{4-x^2}+\frac{2+x}{2-x}-\frac{2-x}{x+2}\)ĐK : \(x\ne\pm2\)
\(=\frac{4x^2+\left(2+x\right)^2-\left(2-x\right)^2}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+x^2+4x+4-\left(x^2-4x+4\right)}{\left(2-x\right)\left(x+2\right)}\)
\(=\frac{5x^2+4x+4-x^2+4x-4}{\left(2-x\right)\left(x+2\right)}=\frac{4x^2+8x}{\left(2-x\right)\left(x+2\right)}=\frac{4x\left(x+2\right)}{\left(2-x\right)\left(x+2\right)}=\frac{4x}{2-x}\)
b, Ta có P = A : B hay \(\frac{4x}{2-x}.\frac{x\left(2-x\right)}{x-3}=\frac{4x^2}{x-3}< 0\)
\(\Rightarrow x-3< 0\)do \(4x^2\ge0\forall x\)
\(\Leftrightarrow x< 3\)
Kết hợp với giả thiết ta có : \(x< 3;x\ne\pm2\)
quên mất, Với P = -1 hay \(\frac{4x^2}{x-3}=-1\Rightarrow4x^2=-x+3\Leftrightarrow4x^2+x-3=0\)
\(\Leftrightarrow4x^2+4x-3x-3=0\Leftrightarrow4x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(4x-3\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-1\end{cases}}\)
Vậy với P = -1 thì x = -1 ; x = 3/4
Bài 2 :
a, \(A=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)ĐK : \(x\ne\pm3\)
\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}=\left(\frac{-3}{x+3}\right).\frac{x+3}{3x^2}=\frac{-1}{x^2}\)
b, Ta có : \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
TH1 : Thay x = 1 vào biểu thức trên ta được : \(\frac{-1}{1}=-1\)tương tự với 1
TH2 : ...
c, Ta có : A < -1 hay \(\frac{-1}{x^2}< 1\Leftrightarrow\frac{-1}{x^2}-1< 0\Leftrightarrow\frac{-1-x^2}{x^2}< 0\)
\(\Rightarrow-\left(x^2+1\right)< 0\)do \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2< -1\)( vô lí )
Vậy ko có giá trị x thỏa mãn A < -1
d, Ta có : \(A=\frac{x}{8}\)hay \(-\frac{1}{x^2}=\frac{x}{8}\Rightarrow x^3=-8\Leftrightarrow x=-2\)
Vậy với A = x/8 thì x = -2
B C A x y M N 6 8
Vì cậu chỉ nhờ làm phần d nên mk chỉ làm phần d thôi nhé!
Với lại đề của phần d cậu viết nhầm phải sửa thành: \(CM:S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)nữa ạ!
Bài làm:
Ta có: \(\widehat{MAB}+\widehat{BAC}+\widehat{NAC}=180^0\)
\(\Rightarrow\widehat{MAB}+\widehat{NAC}=90^0\left(1\right)\)
Xét trong tam giác vuông ANC có \(\widehat{NAC}+\widehat{NCA}=90^0\left(2\right)\)
Từ (1),(2)
=> \(\widehat{NCA}=\widehat{MAB\left(3\right)}\)
Ta có: \(\Delta MBA~\Delta NAC\left(g.g\right)\)
vì \(\hept{\begin{cases}\widehat{NCA}=\widehat{MAB}\left(theo\left(3\right)\right)\\\widehat{BMA}=\widehat{ANC}=90^0\end{cases}}\)
\(\Rightarrow\frac{S_{\Delta AMB}}{S_{\Delta ANC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{6}{8}\right)^2=\frac{9}{16}\)
\(\Rightarrow S_{\Delta AMB}=\frac{9}{16}S_{\Delta ANC}\)
=> đpcm
Chúc bạn học tốt!
\(1,a,A=\frac{356^2-144^2}{256^2-244^2}=\frac{\left(356-144\right)\left(356+144\right)}{\left(256-244\right)\left(256+244\right)}=\frac{212.500}{12.500}\)
\(A=\frac{212}{12}=\frac{53}{3}\)
\(b,B=253^2+94.253+47^2\)
\(B=\left(253+47\right)^2=300^2=90000\)
Bài 2
\(a,x^2-16x=-64\)
\(x^2-16x+64=0\)
\(\left(x-8\right)^2=0\)
\(x=8\)
\(b,\left(x+2\right)^2+4\left(x+2\right)+2=0\)
\(x^2+4x+4+4x+8+2=0\)
\(x^2+8x+14=0\)
\(\sqrt{\Delta}=\sqrt{\left(8^2\right)-\left(4.1.14\right)}=2\sqrt{3}\)
\(x_1=\frac{2\sqrt{3}-8}{2}=\sqrt{3}-4\)
\(x_2=\frac{-2\sqrt{3}-8}{2}=-\sqrt{3}-4\)
a, Xét tam giác ABC và tam giác OMN có
^BAC = ^MON = 900
ACON=BCMN=84=105=2ACON=BCMN=84=105=2
Vậy tam giác ABC ~ tam giác OMN
b, ABOM=BCMN=ACONABOM=BCMN=ACON( tỉ số đồng dạng )
a)
Tính AB:
AB2 = BC2 + AC2
AB2 = 164
AB = \(\sqrt{164}\)= 12,8
Tính OM
OM2 = MN2 + ON2
OM2 = 41
OM = \(\sqrt{41}\)= 6,4
b)
Xét \(\Delta ABC\)và \(\Delta OMN\):
\(\widehat{A}\)= \(\widehat{O}\)= 90o
\(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
\(\Rightarrow\) \(\Delta ABC\)~ \(\Delta OMN\) \(\Leftrightarrow\) \(\frac{AB}{OM}\)= \(\frac{BC}{MN}\)= \(\frac{AC}{ON}\)= 2
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )