Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(a-b\right)^2=3\)
\(\Leftrightarrow a^2-2ab+b^2=3\)(1)
Thay \(a^2+b^2=8\) vào biểu thức (1), ta được:
\(-2ab+8=3\)
\(\Leftrightarrow-2ab=3-8=-5\)
hay \(ab=\frac{5}{2}\)
Vậy: \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)(2)
Thay a-b=2 và a+b=4 vào biểu thức (2), ta được:
\(a^2-b^2=2\cdot4=8\)
Vậy: \(a^2-b^2=8\)
a) \(\left(a-b\right)^2=3\)\(\Rightarrow a^2-2ab+b^2=3\)
mà \(a^2+b^2=8\)\(\Rightarrow8-2ab=3\)
\(\Rightarrow2ab=5\)\(\Rightarrow ab=\frac{5}{2}\)
Vậy \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
mà \(a-b=2\)và \(a+b=4\)
\(\Rightarrow a^2-b^2=2.4=8\)
Vậy \(a^2-b^2=8\)
a) Ta có: \(\hept{\begin{cases}a^2+b^2=8\\\left(a-b\right)^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2+b^2=8\\a^2-2ab+b^2=3\end{cases}}\)
=> \(a^2+b^2-\left(a^2-2ab+b^2\right)=8-3\)
<=> \(2ab=5\)
=> \(ab=\frac{5}{2}\)
b) Ta có: \(a^2-b^2=\left(a-b\right)\left(a+b\right)=2.4=8\)
lm lộn đề nên hơi chậm xíu^^
Theo đề bài ta có:
(a - b)2 = a2 + b2 - 2ab = 2 (1)
(a + b)2 = a2 + b2 + 2ab = 3 (2)
Cộng (1) và (2) => 2(a2 + b2) = 5 => a2 + b2 = 2,5
=> 2ab = 3 - (a2 + b2) = 3 - 2,5 = 0,5 => ab = 0,25
\(1.\)
\(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xyz^2\)
\(=x^2z\left(x-z\right)-xyz\left(x-z\right)\)
\(=\left(x^2z-xyz\right)\left(x-z\right)\)
\(=xz\left(x-y\right)\left(x-z\right)\)
\(2.\)
\(x^2-\left(a+b\right)xy+aby^2\)
\(=x^2-axy-bxy+aby^2\)
\(=x^2-bxy-axy+aby^2\)
\(=x\left(x-by\right)-ay\left(x-by\right)\)
\(=\left(x-ay\right)\left(x-by\right)\)
\(3.\)
\(ab\left(x^2+y^2\right)+xy\left(x^2+y^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=abx^2+b^2xy+a^2xy+aby^2\)
\(=bx\left(ax+by\right)+ay\left(ax+by\right)\)
\(=\left(ax+by\right)\left(bx+ay\right)\)
\(4.\)
\(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+2abxy+a^2b^2+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2b^2+a^2y^2+b^2x^2\)
\(=x^2y^2+b^2x^2+a^2b^2+a^2y^2\)
\(=x^2\left(b^2+y^2\right)+a^2\left(b^2+y^2\right)\)
\(=\left(a^2+x^2\right)\left(b^2+y^2\right)\)
\(5.\)
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-ab^2+ac^2-bc^2\)
\(=a^2b-ab^2-a^2c-b^2c+ac^2-bc^2\)
\(=ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)\)
\(=ab\left(a-b\right)-c\left(a-b\right)\left(a+b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left(ab-bc-ac+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-c\right)\left(b-c\right)\left(a-c\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(6.\)
\(16x^2-40xy+2y^2\)
\(=\left(4x\right)^2-2\cdot4\cdot5xy+\left(5y\right)^2\)
\(=\left(4x-5y\right)^2\)
\(7.\)
\(25x^4-10x^2y+y^2\)
\(=\left(5x^2\right)^2-2\cdot5x^2y+y^2\)
\(=\left(5x^2+y\right)^2\)
\(8.\)
\(-16x^4y^6-24x^5y^5-9x^6y^4\)
\(=-\left(4^2x^4y^6+2\cdot4\cdot3x^5y^5+3^2x^6y^4\right)\)
\(=-\left[\left(4x^2y^3\right)^2+2\left(4x^2y^3\right)\left(3x^3y^2\right)+\left(3x^3y^2\right)^2\right]\)
\(=\left(4x^2y^3+3x^3y^2\right)^2\)
\(9.\)
\(16x^2-4y^2-8x+1\)
\(=\left(4x\right)^2-\left(2y\right)^2-8x+1\)
\(=\left(4x\right)^2-8x+1-\left(2y\right)^2\)
\(=\left(4x+1\right)^2-\left(2y\right)^2\)
\(=\left(4x-2y+1\right)\left(4x+2y+1\right)\)
\(10.\)
\(49x^2-25+42xy+9y^2\)
\(=\left(7x\right)^2-5^2+2\cdot7\cdot3xy+\left(3y\right)^2\)
\(=\left(7x\right)^2+2\cdot7\cdot3xy+\left(3y\right)^2-5^2\)
\(=\left(7x+3y\right)^2-5^2\)
\(=\left(7x+5y+5\right)\left(7x+3y-5\right)\)
1/Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Rightarrow M=ab+bc+ca=\frac{\left(81-141\right)}{2}\)
h) (x+1)(x+4)(x+2)(x+3) - 24
= (x2+4x+x+4)(x2+3x+2x+6)-24
=(x2+5x+5-1)(x2+5x+5+1)-24
=(x2+5x+5)2 -12 -24
=(x2+5x+5)2 -25
=(x2+5x+5)2 -52
=(x2+5x+5-5)(x2+5x+5+5)
=(x2+5x)(x2+5x+10)
i) 4(x2+5x+10x+50)(x2+6x+12x+72)-3x2
=4[x(x+5)+10(x+5)].[x(x+6)+12(x+6)]- 3x2
=4(x+10)(x+5)(x+12)(x+6)-3x2
=4(x+10)(x+6)(x+12)(x+5)-3x2
=4(x2+6x+10x+60)(x2+5x+12x+60)-3x2
=4(x2+16x+60)(x2+17x+60)-3x2
Đặt (x2+16x+60) = a
Ta có: 4a(a+x)-3x2
=4a2+4ax -3x2
=(2a)2 + 2.2a.x +x2 -4x2
= [ (2a) +x]2 - (2x)2
= [ (2a) +x -2x].[(2a) + x +2x)]
=[ (2a) -x].[(2a) + 3x)]
sau đó ta thế a = (x2+16x+60) rồi rút gọn là xong ^^
cau 1 ne:
a^2 + b^2 + c^2 + 3
theo bat dang thuc cosi ban se co
a^2 + a + 1 >= 3a
b^2 + b + 1 >= 3b
c^2 + c + 1 >= 3c
cong 3 ve bat dang thuc lai voi nhau ban se co
a^2 + b^2 + c^2 + (a + b + c) + 3>= 3(a + b + c)
=> a^2 + b^2 + c^2 + 3 >= 2(a + b + c)
dau = xay ra <=> a= b= c = 1
ma theo de bai ta lai co a^2 + b^2 + c^2 + 3 = 2(a + b + c)
=> a = b = c = 1 (dpcm)
b) (a - b)^2 + (b-c)^2 + (c - a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
hay (a + b - 2b)^2 + (b + c - 2c)^2 + (c + a - 2a)^2 = (a + b - 2c)^2 + (b + c - 2a)^2 + (c + a - 2b)^2
dat. a + b = A
b + c = B
c + a = C
=> ban se co:
(A - 2b)^2 + (B - 2c)^2 + (C - 2a)^2 = (A - 2c)^2 + (B - 2a)^2 + (C - 2b)^2
tu day ban nhan pha ra roi rut gon 2 ve cho nhau ban se co
Ab + Bc + Ca = Ac + Ba + Cb
hay (a + b)b + (b + c)c + (c + a)a = (a + b)c + (b + c)a + (c + a)b
hay ab + b^2 + bc + c^2 + ac + a^2 = 2ab + 2bc + 2ac
hay a^2 + b^2 + c^2 - ab - bc - ac = 0
hay 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 0
hay (a-b)^2 + (b-c)^2 +(c - a)^2 = 0
dau = xay ra <=> a = b = c (dpcm)
c) a^3 + b^3 + c^3 + d^3 = (a + b)(a^2 -ab +b^2) + (c+d)(c^2 - cd + d^2) (**)
ban nhan thay a + b + c + d = 0
=> a + b = - c - d
thay vao pt (**) ban se co
-(c + d)(a^2 - ab + b^2) + (c + d)(c^2 - cd + d^2)
(c + d)(c^2 - cd + d^2 -a^2 + ab - b^2)
hay (c + d)(ab - cd + (c^2 + d^2 - a^2 - b^2)) (***)
ban co a + b = - c - d
hay (a + b)^2 = (c + d)^2
hay a^2 + b^2 + 2ab = c^2 + d^2 + 2cd
hay c^2 + d^2 - a^2 - b^2 = 2ab - 2cd
thay vao pt (***) ban se co
(c + d)(ab - cd + 2ab - 2cd)
hay (c +d)(3ab - 3cd) = 3(c+d)(ab - cd) (dpcm)
Bài làm:
Ta có: \(\hept{\begin{cases}\left(a-b\right)^2=2\\\left(a+b\right)^2=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a^2-2ab+b^2=2\\a^2+2ab+b^2=3\end{cases}}\)
=> \(\left(a^2+2ab+b^2\right)+\left(a^2-2ab+b^2\right)=3+2\)
<=> \(2\left(a^2+b^2\right)=5\)
=> \(a^2+b^2=\frac{5}{2}\)
Thay vào tính được: \(\frac{5}{2}+2ab=3\Leftrightarrow2ab=\frac{1}{2}\Rightarrow ab=\frac{1}{4}\)
Vậy \(a^2+b^2=\frac{5}{2}\) và \(ab=\frac{1}{4}\)
\(\left(a-b\right)^2=2\)\(\Rightarrow a^2-2ab+b^2=2\)(1)
\(\left(a+b\right)^2=3\)\(\Rightarrow a^2+2ab+b^2=3\)(2)
Trừ (2) cho (1) ta được: \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=3-2\)
\(\Leftrightarrow4ab=1\)\(\Leftrightarrow ab=\frac{1}{4}\)
\(\Rightarrow a^2+b^2=3-2.\frac{1}{4}=\frac{5}{2}\)
Vậy \(a^2+b^2=\frac{5}{2}\)và \(ab=\frac{1}{4}\)