Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H F E
Giải
b, Áp dụng hệ thức lượng vào trong tam giác vuông AHB
ta có : \(AH^2=AE.AB\left(1\right)\)
ÁP dụng hệ thức lượng vào trong tam giác vuông AHC
Ta có : \(AH^2=AF.AC\left(2\right)\)
Từ (1) , (2) \(\Rightarrow AB.AE=AC.AF\left(đpcm\right)\)
a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{x-\sqrt{x}+1}\)
Áp dụng bđt Cauchy-Schwarz: \(\frac{ab}{c+1}=\frac{ab}{c+a+b+c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)
Chứng minh tương tự: \(\hept{\begin{cases}\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+c}+\frac{bc}{a+b}\right)\\\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\end{cases}}\)
Cộng theo vế: \(P\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
\(P\le\frac{1}{4}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{ac+bc}{a+b}\right)\)
\(P\le\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)
Kẻ BK là đường cao của hình thang => BK = 12 cm
Từ B, kẻ BE//AC => ABEC là hình bình hành và BD vuông góc với BE
Áp dụng hệ thức lượng trong tam giác BDE vuông ở B :1/BD2 + 1/BE2 = 1/BK2
=> BE = 20 cm
Theo định lý Py-ta-go, BD2 +BE2 =DE2 => DE = 25 cm
Lại có DE = DC+CE=DC+AB
=> SABCD =\(\frac{\left(DC+AB\right).BK}{2}=\frac{25.12}{2}=150\) (cm2)