\(a+b\le1\) tìm GTNN của A=\(\frac{1}{a^2+b^2}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{a}{1+b}+\frac{4}{9}.a\left(1+b\right)\ge2\sqrt{\frac{a.4.a.\left(1+b\right)}{\left(1+b\right)9}}=2\sqrt{\frac{4a^2}{3^2}}=\frac{4a}{3}\)

\(\frac{b}{1+a}+\frac{4}{9}.b\left(1+a\right)\ge2\sqrt{\frac{b.4.b.\left(1+a\right)}{\left(1+a\right)9}}=2\sqrt{\frac{2^2b^2}{3^2}}=\frac{4b}{3}\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{a}{1+b}+\frac{b}{1+a}+\frac{4}{9}.a\left(1+b\right)+\frac{4}{9}.b\left(1+a\right)\ge\frac{4a}{3}+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{4a}{3}-\frac{4}{9}\left(a+ab\right)-\frac{4}{9}\left(b+ab\right)+\frac{4b}{3}\)

\(< =>\frac{a}{1+b}+\frac{b}{1+a}\ge\frac{8a}{9}+\frac{8b}{9}-\frac{4}{9}ab-\frac{4}{9}ab\)

\(< =>S\ge\frac{1}{a+b}+\frac{8}{9}\left(a+b\right)-\frac{8}{9}ab=\left(\frac{1}{a+b}+a+b\right)-\frac{a+b+8ab}{9}\)

\(< =>S\ge2-\frac{a+b+8ab}{9}\)

Do \(4ab\le\left(a+b\right)^2\le1< =>a+b+8ab\le3\)

Khi đó ta được : \(S\ge2-\frac{3}{9}=2-\frac{1}{3}=\frac{5}{3}\).Đẳng thức xảy ra \(< =>a=b=\frac{1}{2}\)

Vậy GTNN của \(S=\frac{5}{3}\)đạt được khi \(a=b=\frac{1}{2}\)

22 tháng 2 2020

\(A=\frac{1}{a^3+b^3}+\frac{1}{a^2b}+\frac{1}{ab^2}\ge\frac{1}{\left(a+b\right)\left(a^2-ab+b^2\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\left(\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\right)+\frac{1}{ab}\)

\(\ge\frac{\left(1+1+1+1\right)^2}{\left(a+b\right)^2}+\frac{1}{ab}\ge\frac{16}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{4}}\ge16+4=20\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

2 tháng 8 2020

Ta có : \(a+\frac{1}{b}\le1\Leftrightarrow\frac{ab+1}{b}\le1\Rightarrow ab+1\le b\)  ( vì a ; b > 0 ) 

Mặt khác : \(2\sqrt{ab}\le ab+1\) ( BĐT Cô - si ) 

Suy ra : \(b\ge2\sqrt{ab}\Leftrightarrow\sqrt{b}\ge2\sqrt{a}\Leftrightarrow\frac{b}{a}\ge4\)

Đặt b/a = t ( t >= 4 ) , ta có : \(A=\frac{1}{t}+t=\frac{1}{t}+\frac{t}{16}+\frac{15}{16}t\)

Đến đây bn làm nốt 

25 tháng 9 2019

trả lời lẹ cho tui cấy

NV
22 tháng 4 2020

\(P=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

\(P\ge2\sqrt{\frac{a^2}{16a^2}}+2\sqrt{\frac{b^2}{16b^2}}+\frac{15}{8ab}\ge1+\frac{15}{4\left(a+b\right)^2}\ge1+\frac{15}{4}=\frac{19}{4}\)

\(P_{min}=\frac{19}{4}\) khi \(a=b=\frac{1}{2}\)

29 tháng 9 2017

hình như thiếu đề thì phải đó, thử thay a=b=1 vào:

\(\frac{2}{ab}+\frac{1}{a^2+b^2}+4ab=\frac{2}{1.1}+\frac{1}{1^2+1^2}+4.1.1=\frac{13}{2}< 11\)

24 tháng 5 2015

\(P=a+a+\frac{1}{a^2}+b+b+\frac{1}{b^2}-\left(a+b\right)\)

Áp dụng bất đẳng thức cối 3 số có:\(a+a+\frac{1}{a^2}\ge3\sqrt[3]{\frac{a.a.1}{a^2}}=3\Rightarrow P\ge3+3-1=5\)

nên min P=5 khi a=b=1/2

19 tháng 12 2015

Ta có \(1\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

\(A=\left(\frac{a}{2}+\frac{a}{2}+\frac{1}{16a^2}\right)+\left(\frac{b}{2}+\frac{b}{2}+\frac{1}{16b^2}\right)+\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\)

     \(A\ge3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{1}{16a^2}}+3\sqrt[3]{\frac{b}{2}.\frac{b}{2}.\frac{1}{16b^2}}+\frac{15}{16}.\frac{2}{ab}\ge\frac{3}{4}+\frac{3}{4}+\frac{15}{16}.\frac{2}{\frac{1}{4}}=9\)

Min A = 9 khi a =b = 1/2

19 tháng 12 2015

Mình chưa học đến dạng này 

13 tháng 8 2017

Áp dụng BĐT AM-GM ta có:

\(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\)

Và \(P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\)

\(=a^2+\frac{1}{16a^2}+b^2+\frac{1}{16b^2}+15\left(\frac{1}{16a^2}+\frac{1}{16b^2}\right)\)

\(\ge2\sqrt{a^2\cdot\frac{1}{16a^2}}+2\sqrt{b^2\cdot\frac{1}{16b^2}}+15\cdot2\sqrt{\frac{1}{16a^2}\cdot\frac{1}{16b^2}}\)

\(=\frac{1}{2}+\frac{1}{2}+15\cdot2\cdot\frac{1}{16ab}\)\(\ge1+15\cdot2\cdot\frac{1}{16\cdot\frac{1}{4}}=\frac{17}{2}\)

Xảy ra khi \(a=b=\frac{1}{2}\)