Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề cm a2018+b2018=2
Ta có:\(a^3+b^3=3ab-1\)
\(\Leftrightarrow a^3+b^3+1-3ab=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+1-3ab=0\)
\(\Leftrightarrow\left(a+b+1\right)\left[\left(a+b\right)^2-\left(a+b\right)+1\right]-3ab\left(a+b+1\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+1\right)\left(a^2+ab+b^2-a-b+1\right)=0\)
Vì a,b > 0 => a + b + 1 > 0
=>\(a^2+ab+b^2-a-b+1=0\)
=>2a2+2ab+2b2-2a-2b+2=0
=>(a2+2ab+b2)+(a2-2a+1)+(b2-2b+1)=0
=>(a+b)2+(a-1)2+(b-1)2=0
Mà \(\hept{\begin{cases}\left(a+b\right)^2\ge0\\\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\Rightarrow VT\ge0\)
=>\(\hept{\begin{cases}a+b=0\\a-1=0\\b-1=0\end{cases}}\)=> a=b=1
=>\(a^{2018}+b^{2018}=1+1=2\)
\(a^2\left(a+1\right)-b^2\left(b-1\right)-3ab\left(a-b+\frac{2}{3}\right)\)
\(=a^3+a^2-b^3+b^2-3a^2b+3ab^2-2ab\)
\(=\left(a^3-3a^2b+3ab^2-b^2\right)+\left(a^2-2ab+b^2\right)\)
\(=\left(a-b\right)^3+\left(a-b\right)^2\)(*)
Thay a - b = 7 vào (*), ta có:
(*) \(\Leftrightarrow7^3+7^2=392\)
M=(a-b)(a2+ab+b2)-3ab
= a2+ab+b2-3ab
=a2-2ab+b2
=(a-b)2=12=1