Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức côsi cho 2 số thực. Ta có:
\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)
\(\Leftrightarrow M\ge2\)
Dấu "=" xảy ra khi \(a=b.\)
Mà \(a+b=2\) nên \(a=b=1.\)
Vậy \(a=b=1\) thì M nhận GTNN là 2
\(\frac{a}{b}=\frac{4}{7}\Rightarrow\frac{a}{4}=\frac{b}{7}\)
Gọi k là giá trị chung của các tỉ số
\(\frac{a}{4}=k\Rightarrow a=4k\) ; \(\frac{b}{7}=k\Rightarrow b=7k\)
Từ đó
\(4b^2-6a^2=49\)
\(\Rightarrow4.49k^2-6.16k^2=49\)
\(\Rightarrow196k^2-96k^2=49\)
\(\Rightarrow\left(196-96\right)k^2=49\)
\(\Rightarrow100k^2=49\)
\(\Rightarrow k^2=\frac{49}{100}\)
\(\Rightarrow k=-\frac{7}{10}\)hoặc \(k=\frac{7}{10}\)
với \(k=-\frac{7}{10}\) thì \(\frac{a}{4}=k\Rightarrow\frac{a}{4}=-\frac{7}{10}\Rightarrow a=-\frac{14}{5}\)
\(\frac{b}{7}=k\Rightarrow\frac{b}{7}=-\frac{7}{10}\Rightarrow b=-\frac{49}{10}\)
Với \(k=\frac{7}{10}\)thì \(\frac{a}{4}=k\Rightarrow\frac{a}{4}=\frac{7}{10}\Rightarrow a=\frac{14}{5}\)
\(\frac{b}{7}=k\Rightarrow\frac{b}{7}=\frac{7}{10}\Rightarrow b=\frac{49}{10}\)
Vậy \(a=-\frac{14}{5};b=-\frac{49}{10}\)và \(a=\frac{14}{5};b=\frac{49}{10}\)
Suy ra GTNN của \(3a+2b=3.\left(\frac{-14}{5}\right)+2.\left(-\frac{49}{10}\right)=-\frac{42}{5}+-\frac{49}{5}=-\frac{91}{5}\)
\(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\), ta có: \(a=bk;b=ck\)
\(\frac{a}{c}=\frac{bk}{c}=\frac{ck\times k}{c}=k^2\) (1)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\) (2)
Từ (1) và (2)
=> \(\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(\text{đ}pcm\right)\)
Ta có:\(\frac{a}{b}=\frac{2,24}{3,36}\Rightarrow\frac{a}{2,24}=\frac{b}{3,36}\Rightarrow\frac{1}{100}\cdot\frac{a}{2,24}=\frac{1}{100}\cdot\frac{b}{3,36}\Rightarrow\frac{a}{224}=\frac{b}{336}\Rightarrow\frac{a}{2}=\frac{b}{3}\)
Đặt \(\frac{a}{2}=\frac{b}{3}=k\Rightarrow a=2k,b=3k\)
Mà \(a^2:b=2\)
Hay \(\left(2k\right)^2:3k=2\)
\(4k^2:3k=2\)
\(\frac{4}{3}k=2\)
\(k=2:\frac{4}{3}\)
\(k=\frac{3}{2}\)
\(\Rightarrow a=\frac{3}{2}\cdot2=3,b=\frac{3}{2}\cdot3=\frac{9}{2}\)
\(A=x^2+4x+5\)
\(=\left(x^2+2.x.2+2^2\right)+1\)
\(\Rightarrow\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+1\ge1\)
Vậy giá trị nhỏ nhất là 1
Khi x = -2
A=x2+4x+5
=(x2+2.x.2+22)+1
⇒(x+2)2≥0
⇒(x+2)2+1≥1
Vậy giá trị nhỏ nhất là 1
Khi x = -2
Áp dụng bất đẳng thức Bunhiacopxki , ta có : \(4=\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)
\(\Rightarrow a^2+b^2\ge2\). Dấu "=" xảy ra khi a = b
Vậy A đạt giá trị nhỏ nhất bằng 2 tại a = b =1
cảm ơn bạn