Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có :
\(\left(a+b\right)\left(a-b\right)=a^2-b^2=m.n\)
\(\left(a+b\right)\left(a^2+b^2\right)=a^3-ab^2+a^2b-b^3=m.n.m=m^2n\)
Lại có :
\(a^2+2ab+b^2=m^2\)
\(a^2-2ab+b^2=n^2\)
\(\Rightarrow4ab=m^2-n^2\)
\(\Rightarrow ab=\frac{m^2-n^2}{4}\)
\(\Rightarrow a^3-b^3=m^2n-\frac{m^2-n^2}{4}n\)
Vì \(\hept{\begin{cases}a+b=m\\a-b=n\end{cases}\Rightarrow\hept{\begin{cases}a=m-b\\m-b-b=n\end{cases}\Leftrightarrow}\hept{\begin{cases}a=m-b\\m-2b=n\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=m-b\\b=-\frac{\left(n-m\right)}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=m-b\\b=\frac{m-n}{2}\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a=m-\frac{m-n}{2}\\b=\frac{m-n}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2m-m+n}{2}\\b=\frac{m-n}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=\frac{m+n}{2}\\b=\frac{m-n}{2}\end{cases}}\)
Do đó \(a.b=\frac{m+n}{2}.\frac{m-n}{2}=\frac{m^2-n^2}{4}\)
+) \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=n.\left[\left(\frac{m+n}{2}\right)^2+\frac{m^2-n^2}{4}+\left(\frac{m-n}{2}\right)^2\right]\)
\(=n.\frac{m^2+2mn+n^2+m^2-n^2+m^2-2mn+n^2}{4}\)
\(=n.\frac{3m^2-n^2}{4}\)
\(=\frac{3m^2n\cdot n^3}{4}\)
_Minh ngụy_
Giả sử a>b (b<a cũng được)
Khi đó ta tính được a và b theo tổng và hiệu:
a=(m+n)/2; b=(m-n)/2 => ab= (m+n)(m-n)/4 = (m2-n2)/4
Ta có: a3-b3 = (a-b)(a2+ab+b2) = n.(a2+b2+(m2-n2)/4) (1)
Lại có: (a+b)2=a2+2ab+b2 <=> a2+b2=(a+b)2-2ab = m2 - (m2-n2)/2 = (m2+n2)/2 (2)
Thế (2) và (1) suy ra: a3-b3 = n.((m2+n2)/2+(m2-n2)/4) = n.((3m2+n2)/4) = (3m2n+n3)/4
Vậy ab=(m2-n2)/4 và a3-b3= (3m2n+n3)/4.
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=\left(a-b\right)\left(a^2+2ab+b^2-ab\right)\)
\(=\left(a-b\right)\left[\left(a+b\right)^2-ab\right]\)
\(=n\left(m^2-ab\right)\)
Mình làm được vậy thôi , nhưng mình nghĩ đề bài thiếu gì đó .
M = a^2 + b^2 = (a+b)^2 - 2ab = (-5)^2 - 2x6 = 13
N = a^3 - b^3 = (a+b)^3 - 3ab (a+b) = (-5)^3 - 3x6x(-5) = -35
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
\(\Leftrightarrow4ab=\left(a+b\right)^2-\left(a-b\right)^2=m^2-n^2\)
nên \(ab=\dfrac{1}{4}m^2-\dfrac{1}{4}n^2\)
\(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=n^3+\dfrac{3}{4}\left(m^2-n^2\right)\cdot n\)
\(=n^3+\dfrac{3}{4}m^2n-\dfrac{3}{4}n^3=\dfrac{1}{4}n^3+\dfrac{3}{4}m^2n\)