Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Đặt a+b=s và ab=p. Ta có: \(a^2+b^2=4-\left(\frac{ab+2}{a+b}\right)^2\Leftrightarrow\left(a+b\right)^2-2ab+\frac{\left(ab+2\right)^2}{\left(a+b\right)^2}=4\)
\(\Leftrightarrow s^2-2p+\frac{\left(p+2\right)^2}{s^2}=4\Leftrightarrow s^4-2ps^2+\left(p+2\right)^2=4s^2\)
\(\Leftrightarrow s^4-2s^2\left(p+2\right)+\left(p+2\right)^2=0\Leftrightarrow\left(s^2-p-2\right)^2=0\)
\(\Leftrightarrow s^2-p-2=0\Leftrightarrow p+2=s^2\Leftrightarrow\sqrt{p+2}=\left|s\right|\Leftrightarrow\sqrt{ab+2}=\left|a+b\right|\)
Vì a, b là số hữu tỉ nên |a+b| là số hữu tỉ. Vậy \(\sqrt{ab+2}\)là số hữu tỉ
Bạn vào trang này nha ( https://olm.vn/hoi-dap/question/898864.html ). Mình giải rồi đấy. Nhớ k mình nha
\(x^3+y^3=2x^2y^2\)
<=> \(\left(x^3+y^3\right)^2=4x^4y^4\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
<=> \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)
<=> \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ
xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ
Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
\(\sqrt{1-xy}=\frac{\sqrt{1-xy}.x^2y^2}{x^2y^2}\)\(=\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}\)
có: \(x^5+y^5=2x^2y^2\Rightarrow x^2y^2=\frac{x^5+y^5}{2}\)
\(\frac{\sqrt{x^4y^4-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(\frac{x^5+y^5}{2}\right)^2-x^5y^5}}{x^2y^2}=\frac{\sqrt{\left(x^5-y^5\right)^2}}{2x^2y^2}=\frac{\left|x^5-y^5\right|}{2x^2y^2}\)
Do x, y hữu tỉ nên \(\frac{\left|x^5-y^5\right|}{2x^2y^2}\)hữu tỉ (đpcm)
Mình nhầm chút, sửa lại :
\(\left[\left(a+b\right)^2-\left(1+ab\right)\right]^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=1+ab\)
\(\Leftrightarrow\left\{\begin{matrix}1+ab\ge0\\\sqrt{1+ab}=a+b\end{matrix}\right.\)
Mà a,b là số hữu tỉ nên a+b là số hữu tỉ
Vậy \(\sqrt{1+ab}\) là số hữu tỉ.
Từ giả thiết \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\)
Ta suy ra được \(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a^2+b^2+2ab\right)-2\left(1+ab\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(1+ab\right)\right]\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(1+ab\right)\left(a+b\right)^2+\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(1+ab\right)^2\right]^2=0\)
\(\Leftrightarrow\left(a+b\right)^2-\left(1+ab\right)^2=0\)
\(\Leftrightarrow\left(1+ab\right)^2=\left(a+b\right)^2\)
Tới đây bạn tự giải tiếp :)