\(\dfrac{2+\sqrt{2a}}{2-a}+\dfr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 2 2022

Với mọi \(0< a< \dfrac{1}{2}\) ta có:

\(\left(\sqrt{2a}-1\right)^2\ge0\Rightarrow2a+1\ge2\sqrt{2a}\)

\(\Rightarrow1\ge2\sqrt{a}\left(\sqrt{2}-\sqrt{a}\right)\)

\(\Rightarrow\dfrac{1}{\sqrt{2}-\sqrt{a}}\ge2\sqrt{a}\)

Do đó:

\(\dfrac{2+\sqrt{2a}}{2-a}=\dfrac{2-a+a+\sqrt{2a}}{2-a}=1+\dfrac{\sqrt{a}\left(\sqrt{a}+\sqrt{2}\right)}{\left(\sqrt{2}-\sqrt{a}\right)\left(\sqrt{2}+\sqrt{a}\right)}=1+\dfrac{\sqrt{a}}{\sqrt{2}-\sqrt{a}}\ge1+\sqrt{a}.2\sqrt{a}=2a+1\)

Tương tự:

\(\dfrac{2+\sqrt{2b}}{2-b}\ge2b+1\)

Cộng vế:

\(\dfrac{2+\sqrt{2a}}{2-a}+\dfrac{2+\sqrt{2b}}{2-b}\ge2a+1+2b+1=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 1:

Ta có:

\(\text{VT}=\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\)

\(=a-\frac{2ab^2}{a+2b^2}+b-\frac{2bc^2}{b+2c^2}+c-\frac{2ca^2}{c+2a^2}=(a+b+c)-2\left(\frac{ab^2}{a+2b^2}+\frac{bc^2}{b+2c^2}+\frac{ca^2}{c+2a^2}\right)\)

\(=3-2M(*)\)

Áp dụng BĐT Cauchy ta có:

\(M=\frac{ab^2}{a+b^2+b^2}+\frac{bc^2}{b+c^2+c^2}+\frac{ca^2}{c+a^2+a^2}\leq \frac{ab^2}{3\sqrt[3]{ab^4}}+\frac{bc^2}{3\sqrt[3]{bc^4}}+\frac{ca^2}{3\sqrt[3]{ca^4}}\)

\(\Leftrightarrow M\leq \frac{1}{3}(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2})\)

Tiếp tục áp dụng BĐT Cauchy:

\(\sqrt[3]{a^2b^2}+\sqrt[3]{b^2c^2}+\sqrt[3]{c^2a^2}\leq \frac{ab+ab+1}{3}+\frac{bc+bc+1}{3}+\frac{ca+ca+1}{3}=\frac{2(ab+bc+ac)+3}{3}\)

\(ab+bc+ac\leq \frac{(a+b+c)^2}{3}=3\) (quen thuộc)

\(\Rightarrow M\leq \frac{1}{3}.\frac{2.3+3}{3}=1(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq 3-2.1=1\)

(đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
17 tháng 5 2018

Bài 2:

Áp dụng BĐT Cauchy -Schwarz:

\(\text{VT}=\frac{a^3}{a^2+a^2b^2}+\frac{b^3}{b^2+b^2c^2}+\frac{c^3}{c^2+a^2c^2}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2}\)

hay:

\(\text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+a^2b^2+b^2c^2+c^2a^2}(*)\)

Mặt khác, theo BĐT Cauchy ta dễ thấy:

\(a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2\)

\(\Rightarrow (a^2+b^2+c^2)^2\geq 3(a^2b^2+b^2c^2+c^2a^2)\)

\(\Leftrightarrow 1\geq 3(a^2b^2+b^2c^2+c^2a^2)\Rightarrow a^2b^2+b^2c^2+c^2a^2\leq \frac{1}{3}(**)\)

Từ \((*);(**)\Rightarrow \text{VT}\geq \frac{(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2}{1+\frac{1}{3}}=\frac{3}{4}(a\sqrt{a}+b\sqrt{b}+c\sqrt{c})^2\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

26 tháng 5 2017

Áp dụng bất đẳng thức Bunyakovsky

\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)

\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)

Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)

\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)

\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)

\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)

\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)

Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)

\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)

Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)

\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)

\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=2\)

3 tháng 12 2017

a)ta có \(a^2+b^2\ge2ab\)

\(\Leftrightarrow1\ge ab\)

theo bđt cauchy schwarz ta có

\(\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(\dfrac{a}{b^2}+\dfrac{b}{a^2}\right)\ge2\sqrt{\dfrac{a.b}{a.b}}.2\sqrt{\dfrac{a.b}{a^2.b^2}}=2.1.2\dfrac{1}{1^2}=4\)

\(\Rightarrow dpcm\)

3 tháng 4 2018

Áp dụng BĐT AM-Gm: ( dạng \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\))

\(VT=\sum\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\sum\dfrac{a}{2}+\sum\left[\dfrac{ab}{a+c}+\dfrac{bc}{a+c}\right]\right)\)

\(=\dfrac{1}{9}\left(\dfrac{a+b+c}{2}+a+b+c\right)=\dfrac{1}{6}\left(a+b+c\right)\)

\(\le\dfrac{1}{6}\sqrt{3\left(a^2+b^2+c^2\right)}=1\) (đpcm)

Dấu = xảy ra khi a=b=c=2

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

8 tháng 1 2018

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{8}\ge\dfrac{3a^2}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{8}\ge\dfrac{3b^2}{2};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{8}\ge\dfrac{3c^2}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\dfrac{a^2+b^2+c^2+9}{8}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2}\)

\(\Leftrightarrow P\ge\dfrac{\dfrac{3\left(a^2+b^2+c^2\right)}{2}-\dfrac{a^2+b^2+c^2+9}{8}}{2}=\dfrac{3}{2}\)

13 tháng 6 2018

@DƯƠNG PHAN KHÁNH DƯƠNG

\(a;b;c\ge0\)thỏa mãn \(ab+bc+ca=1\). CMR \(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}+\dfrac{1}{2c+2ab+1}\ge1\)

Đảm bảo an ninh :))

23 tháng 6 2017

$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

24 tháng 6 2017

còn câu 1 nữa Ace Legona