Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\)
\(\ge\frac{\left(1+1+1\right)^2}{a+2b}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}}\)
\(>\frac{9}{\sqrt{3\cdot3c^2}}=\frac{9}{3c}=\frac{3}{c}=VP\)
ta có:\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\)( bđt bunhiacopxki)
\(\left(a+2b\right)^2\le3.3c^2=9c^2\)→\(a+2b\le3c\)
lại có:\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
dấu = xảyra khi.... a+2b2=3c2(:v)
Ta có : \(\frac{a}{b^2c^2}+\frac{b}{c^2a^2}+\frac{c}{a^2b^2}=\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và giả thiết a2 + b2 + c2 = 3abc ta có :
\(\frac{a^4}{a^3b^2c^2}+\frac{b^4}{b^3c^2a^2}+\frac{c^4}{c^3a^2b^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{\left(3abc\right)^2}{a^2b^2c^2\left(a+b+c\right)}=\frac{9}{a+b+c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a=b=c=1
bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại ta có:
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì
\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.
áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).
nên a2/a4 + bc <=1/2v(bc).
do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).
ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.
thật vậy.
giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).
áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.
ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.
nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)
lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.
hay VP <= 1 (2).
từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay
(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3
tức N <= 3 (đpcm).
(mình chưa biết đánh nên cố đọc nhé!)
Áp dụng bất đẳng thức AM - GM cho các bộ bốn số không âm, ta được: \(LHS=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\)\(=\frac{x^2+x^2+y^2+z^2}{4-yz}+\frac{y^2+y^2+z^2+x^2}{4-zx}+\frac{z^2+z^2+x^2+y^2}{4-xy}\)\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\)
Như vậy, ta cần chứng minh: \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{zx}}{4-zx}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{zx}}{zx\left(4-zx\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Theo bất đẳng thức Cauchy-Schwarz, ta có: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2\)
\(\Rightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{zx}\right)\rightarrow\left(a;b;c\right)\). Khi đó \(\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)
và ta cần chứng minh \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge1\)
Xét BĐT phụ: \(\frac{x}{x^2\left(4-x^2\right)}\ge-\frac{1}{9}x+\frac{4}{9}\left(0< x\le1\right)\)(*)
Ta có: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(x^2-2x-9\right)}{9x\left(x-2\right)\left(x+2\right)}\ge0\)(Đúng với mọi \(x\in(0;1]\))
Áp dụng, ta được: \(\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c^2\left(4-c^2\right)}\ge-\frac{1}{9}\left(a+b+c\right)+\frac{4}{9}.3\)
\(\ge-\frac{1}{9}.3+\frac{4}{3}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
1. Chứng minh với mọi số thực a, b, c ta có 2a2+b2+c2\(\ge\)2a(b+c)
Chứng minh:
Ta có 2a2+b2+c2=(a2+b2)+(a2+c2)
Áp dụng bđt cauchy ta có
(a2+b2)+(a2+c2)\(\ge\)2ab+2ac=2a(b+c)
Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)
\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)
\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)
\(\ge\text{}\Sigma\text{}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)
\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)
\(=2+ab+bc+ca\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)