Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc = 1 nên \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)\(=\frac{ac}{abc+ac+c}+\frac{abc}{abc^2+abc+ac}+\frac{c}{ca+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1\)(*)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức và áp dụng đẳng thức (*), ta được:
\(\frac{a}{\left(ab+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\)\(=\frac{\left(\frac{a}{ab+a+1}\right)^2}{a}+\frac{\left(\frac{b}{bc+b+1}\right)^2}{b}+\frac{\left(\frac{c}{ca+c+1}\right)^2}{c}\)
\(\ge\frac{\left(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2}{a+b+c}=\frac{1}{a+b+c}\)
Đẳng thức xảy ra khi a = b = c = 1
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
1,
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)
+\(10=x+3y=x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge10\sqrt[10]{\frac{1}{3^9}x.y^9}\)
\(=\frac{10}{3}.\sqrt[10]{3}.\sqrt[10]{xy^9}\)
\(\Rightarrow xy^9\le3^9\)
+\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}=\frac{1}{\sqrt{x}}+\frac{3}{\sqrt{3y}}+\frac{3}{\sqrt{3y}}+.....+\frac{3}{\sqrt{3y}}\)
\(\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9x.y^9}}}\ge10\sqrt[10]{\frac{3^9}{\sqrt{3^9.3^9}}}=10\)
Dấu "=" xảy ra khi và chỉ khi \(x=1;y=3\)
\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)
Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)
\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)
\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta cần chứng minh bất đẳng thức phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)} \)
\(\left(a+b\right)^2\ge4ab\)
\(a^2+2ab+b^2-4ab\ge0\)
\(\left(a-b\right)^2\ge0\)(luôn đúng)
Xét c+1 = a+b+c+c
Áp dụng bất đẳng thức trên, ta có:
\(\frac{ab}{c+1}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
Cộng vế theo vế, ta có:
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab}{b+c}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{c+a}+\frac{c\left(b+a\right)}{a+b}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)
=> Điều phải chứng minh
ta có với x,y>0 thì \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(*) dấu "=" xảy ra khi x=y
áp dụng bđt (*) và do a+b+c=1 nên ta có
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
tương tự ta có \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{b+a}+\frac{1}{b+c}\right)\)
\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+bc}{c+a}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{c+a}{b+1}\le\frac{1}{4}\)
dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
TA CÓ:
\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)
\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)
ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)
\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)
TA CẦN C/M:
\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\) \(\left(=2abc\left(a+b+c\right)\right)\)
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)
VẬY CẦN C/M:
\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)
XÉT HIỆU:
\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)
\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)
VÌ:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)
\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)
\(\Rightarrow DPCM\)
Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b
Giả sử \(c=min\left\{a,b,c\right\}\)
Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)
1) a2 - ab + b2 ≥ 0
<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0
<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b = 0
2) a2 - ab + b2 ≥ 1/4( a + b )2
<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2
<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0
<=> 3a2 - 6ab + 3b2 ≥ 0
<=> a2 - 2ab + b2 ≥ 0
<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
Đẳng thức xảy ra <=> a = b
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{4}{a}+\frac{1}{4b}\right)(a+b)\geq (2+\frac{1}{2})^2\)
\(\Leftrightarrow \left(\frac{4}{a}+\frac{1}{4b}\right).\frac{5}{4}\geq \frac{25}{4}\)
\(\Leftrightarrow \frac{4}{a}+\frac{1}{4b}\geq 5\) (đpcm)
Dấu "=" xảy ra khi \(\left\{\begin{matrix} \frac{2}{a}=\frac{1}{2b}\\ a+b=\frac{5}{4}\end{matrix}\right.\) hay $a=1; b=\frac{1}{4}$