Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) ta có :
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)\(;\)\(\frac{b}{b+c}>\frac{b}{a+b+c}\) và \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Suy ra \(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)\(;\)\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\) và \(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)
\(\Rightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{a+c+a+b+b+c}{a+b+c}=2\)
Suy ra \(M< 2\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) không là số nguyên
Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)
\(< =>ac< bc< =>a< b\)(đpcm)
Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)
\(< =>ac>bc< =>a>b\)(đpcm)
\(\frac{a}{b}< \frac{a}{b+1}\)(2 phân số cùng tử số, mẫu số nào bé hơn thì phân số đó lớn hơn)
\(\frac{a}{b+1}< \frac{a+1}{b+1}\)(2 phân số cùng mẫu số, tử số nào lớn hơn thì phân số đó lớn hơn)
Từ đó suy ra \(\frac{a}{b}< \frac{a+1}{b+1}\)
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
\(\Leftrightarrow\frac{ab}{b\left(b+1\right)}+\frac{-a\left(b+1\right)}{b\left(b+1\right)}=\frac{-a}{b\left(b+1\right)}\)
\(\Rightarrow ab-a\left(b+1\right)=-a\)(khử mẫu)
\(\Leftrightarrow ab-ab-a=-a\)(đúng)
Vậy \(\frac{a}{b+1}+\frac{-a}{b}=\frac{-a}{b^2+b}\)
_Kik nha!! ^ ^
1)
\(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
mà ab = ab; ac > bc ( vì a > b )
=> \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)
Ta có: a
/b+1 + (-a/b)
= a.b/b.(b+1) + (b+1).(-a)/b.(b+1)
= a.b/b.(b+1) + (-a.b - a)/b.(b+1)
= a.b+(-a.b-a)/b.(b+1)
= a.b-a.b-a/b2 + b
= -a/b2 + b ( đpcm)