\(5a^2+15a-b^2⋮49\Leftrightarrow3a+b⋮7\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2020

Nếu \(5a^2+15ab-b^2⋮49\)

\(\Rightarrow5a^2+15ab-b^2⋮7\left(1\right)\)

Mặt khác lại có:

\(\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

\(=7a\cdot\left(2a+3b\right)⋮7\left(2\right)\)

Từ (1) và (2) suy ra:

\(\left(3a+b\right)^2⋮7\Rightarrow3a+b⋮7\)

Nếu \(3a+b⋮7\) ta có:

\(\left(3a+b\right)+2\cdot\left(2a+3b\right)=7\cdot\left(a+b\right)⋮7\)

\(\Rightarrow2\cdot\left(2a+3b\right)⋮7\Rightarrow2a+3b⋮7\)

\(\Rightarrow\left(5a^2+15ab-b^2\right)+\left(3a+b\right)^2\)

\(=7a\cdot\left(2a+3b\right)⋮49\left(3\right)\)

\(3a+b⋮7\) nên \(\left(3a+b\right)^2⋮49\left(4\right)\)

Từ (3) và (4) suy ra:

\(5a^2+15ab-b^2⋮49\)

\(\Leftrightarrow3a+b⋮7\)

18 tháng 3 2020

đầu bài đúng ko đó bn

mk thấy sao sao

bn xem lại hộ mk

4 tháng 8 2017

1/ Chứng minh nó chia hết cho 3:

Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.

\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.

\(\Rightarrow xy⋮3\)

Chứng minh chia hết cho 4.

Nếu cả x, y đều chẵn thì \(xy⋮4\)

Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ

\(\Rightarrow x=2k+1;y=2m;z=2n+1\)

\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)

\(\Rightarrow m⋮2\)

\(\Rightarrow y⋮4\)

\(\Rightarrow xy⋮4\)

Với x, y đều lẻ nên z chẵn

\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)

\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này

Vậy \(xy⋮4\)

Từ chứng minh trên 

\(\Rightarrow xy⋮12\)

4 tháng 8 2017

2/ \(a+b=c+d\)

\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)

\(\Leftrightarrow2ab=2cd\)

\(\Leftrightarrow-2ab=-2cd\)

\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)

Kết hợp với \(a+b=c+d\)

\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)

\(\RightarrowĐPCM\)

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

4 tháng 4 2018

Ta có :  \(a+5=7^c\Leftrightarrow5=7^c-a\)

Thay \(a^3+5a^2+21=7^b\) ta được :

\(a^3\left(7^c-a\right)\times a^2+21=7^b\)

\(\Rightarrow a^3+7^c\times a^2-a^3+21=7^b\)

\(\Rightarrow7^c\times a^2+21=7^b\)

\(\Rightarrow7^b-7^c\times a^2=21\left(1\right)\)

\(\Rightarrow7^c\times\left(7^{b-c}-a^2\right)=21\left(2\right)\)

Từ (1) suy ra \(7^b>7^c\times a^2\Rightarrow b>c\)

\(\Rightarrow7^{b-c}\) nguyên 

Mà : \(a^2\) nguyên

Từ đó suy ra \(7^{b-c}-a^2\) nguyên

Kết hợp với \(\left(2\right)\Rightarrow21⋮7^c\)

Mà : \(7^c\ge7\) do c nguyên dương nên \(7^c=7\)\(\Rightarrow c=1\)

Thay vào \(a+5=7^c\) ta được \(a+5=7^1\Leftrightarrow a+5=7\Leftrightarrow a=2\)

Thay c =1 ; a=2 vào (2) ta có :

\(7^1\times\left(7^{b-1}-2^2\right)=21\)

\(\Rightarrow7^{b-1}-4=3\)

\(\Rightarrow7^{b-1}=7\)

\(\Rightarrow b-1=1\)

\(\Rightarrow b=2\)

Vậy a = 2 ; b = 2 ; c = 1

23 tháng 9 2020

giả sử c chẵn khi đó ta có:

\(v_2\left(c\right)=v_2\left(5c+2b\right)+v_2\left(2c+b\right)\)

Nếu b lẻ thì ta có: \(v_2\left(c\right)=v_2\left(5c+2b\right)=v_2\left(5c\right)\Rightarrow v_2\left(5c\right)< v_2\left(2b\right)=1\)

Điều này vô lý!

Do đó c lẻ: Xét p|c là 1 ước nguyên tố của c

Ta có: \(v_p\left(c\right)=v_p\left(5c+2b\right)+v_p\left(2c+b\right)\)

Ta thấy \(v_p\left(c\right)>v_p\left(5c+2b\right);v_p\left(2c+b\right)>0\)

Do đó: \(v_p\left(5c+2b\right)=min\left[v_p\left(c\right);v_p\left(4c+2b\right)\right]\)

\(\Rightarrow v_p\left(5c+2b\right)=v_p\left(4c+2b\right)=v_p\left(2c+b\right)\)

\(\Rightarrow v_p\left(c\right)=2v_p\left(5c+2b\right):\)số chẵn nên => c là số chính phương.(đpcm)

25 tháng 10 2016

Hỏi đáp Toán