Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \((a^{2007}+b^{2007})\left(a+b\right)-\left(a^{2006}+b^{2006}\right)ab\)
\(=\left(a^{2008}+a^{2007}b+ab^{2007}+b^{2008}\right)-\left(a^{2007}b+ab^{2007}\right)\)
\(=a^{2008}+b^{2008}\)
Mà: \(a^{2006}+b^{2006}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\) ( * )
\(\Rightarrow\left(a^{2008}+b^{2008}\right)\left(a+b\right)-\left(a^{2008}+b^{2008}\right)ab=a^{2008}+b^{2008}\)
\(\Leftrightarrow\left(a^{2008}+b^{2008}\right)\left(a+b-ab\right)=a^{2008}+b^{2008}\)
\(\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\end{cases}}\)
thay vào (*) ta tính dc:
a=1 thì\(\orbr{\begin{cases}b=1\\b=0\end{cases}}\) b=1 thì \(\orbr{\begin{cases}a=1\\a=0\end{cases}}\)
mặt khác a, b dương => a=1, b=1
Khi đó: \(a^{2009}+b^{2009}=1+1=2\)
Ta có : \(a^{2006}+b^{2016}=a^{2007}+b^{2007}=a^{2008}+b^{2008}\)
\(\Leftrightarrow\orbr{\begin{cases}a^{2006}+b^{2006}-\left(a^{2007}+a^{2007}\right)=0\left(1\right)\\a^{2008}+b^{2008}-\left(a^{2007}+b^{2007}\right)=0\left(2\right)\end{cases}}\)
Cộng (1) với (2) => \(a^{2008}+b^{2008}-2\left(a^{2007}+b^{2007}\right)+a^{2006}+b^{2006}=0\)
\(\Leftrightarrow a^{2008}-2a^{2007}+a^{2006}+b^{2008}-2b^{2007}+b^{2006}\)
\(\Leftrightarrow a^{2006}\left(a^2-2a+1\right)+b^{2006}\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow a^{2006}\left(a-1\right)^2+b^{2006}\left(b-1\right)^2=0\) (*)
Vì a , b > 0 và : \(\left(a-1\right)^2\ge0\forall a\) ; \(\left(b-1\right)^2\ge0\forall b\)
Nên : phương trình (*) <=> \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\end{cases}\Leftrightarrow a=b=1}}\)
Vậy \(S=a^{2009}+b^{2009}=1+1=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình như thiếu mũ 2007 -.- Sửa luôn nhóe :)
Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.
\(S_n=\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^n}\)
Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)
\(=\left(1+\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}\right)-\left(\dfrac{1}{a}+\dfrac{1}{a^2}+...+\dfrac{1}{a^{n-1}}+\dfrac{1}{a^n}\right)\)\(=1-\dfrac{1}{a^n}< 1\Rightarrow S_n< \dfrac{1}{a-1}\left(1\right)\)
Áp dụng BĐT ( 1 ) cho a = 2008 và mọi n = 2,3, ..., 2004 ta được:
\(B=\dfrac{1}{2008}+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}\right)^2+...+\left(\dfrac{1}{2008}+\dfrac{1}{2008^2}+...+\dfrac{1}{2008^{2007}}\right)^{2007}< \dfrac{1}{2007}+\left(\dfrac{1}{2007}\right)^2+...+\left(\dfrac{1}{2007}\right)^{2007}\left(2\right)\)
Lại áp dụng BĐT ( 1 ) cho a = 2007 và n = 2007, ta được:
\(\dfrac{1}{2007}+\dfrac{1}{2007^2}+...+\dfrac{1}{2007^{2007}}< \dfrac{1}{2006}=A\left(3\right)\)
Từ ( 2 ) và ( 3 ) => B < A.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Bunyakovsky, ta có:
\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(0,25x^3+x^2+x=0\)
\(\Leftrightarrow x\left(0,25x^2+x+1\right)=0\)
\(\Leftrightarrow x\left[\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2\right]=0\)
\(\Leftrightarrow x\left(\frac{1}{2}x+1\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\frac{1}{2}x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy....
b) \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1+\frac{-x}{2009}+1\)
\(\Leftrightarrow\frac{2-x+2007}{2007}=\frac{1-x+2008}{2008}+\frac{-x+2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
\(\Rightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2-\left(2007-x\right)\left(2008-x\right)+\left(x-2008\right)^2}\)
\(=\frac{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}{\left(2007-x\right)^2+\left(2007-x\right)\left(x-2008\right)+\left(x-2008\right)^2}\)
\(=1\)
Thử lại : 02008 + 22008 > 02007 + 22007 vì 22008 > 22007
12008 +12008 =12007 + 12007 vì 1=1
Vậy (A,B) =( 0,2) , (1,1)
Bai y/c CM BDT bn ak