\(\left(1+\dfrac{a}{b}\right)^5+\left(1+\dfrac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Ta có:

\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{1^2}{a^3\left(b+c\right)}+\dfrac{1^2}{b^3\left(c+a\right)}+\dfrac{1^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{a^2b^2c^2}{a^3\left(b+c\right)}+\dfrac{a^2b^2c^2}{b^3\left(c+a\right)}+\dfrac{a^2b^2c^2}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)

\(\dfrac{b^2c^2}{a\left(c+b\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT Svacxo ta có:

\(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)^2}{a\left(b+c\right)+b\left(a+c\right)+c\left(a+b\right)}\) \(\dfrac{b^2c^2}{a\left(b+c\right)}+\dfrac{a^2c^2}{b\left(c+a\right)}+\dfrac{a^2b^2}{c\left(a+b\right)}\ge\dfrac{\left(ab+bc+ca\right)}{2}\) (1)

Chứng minh: \(\dfrac{ab+bc+ca}{2}\ge\dfrac{3}{2}\Leftrightarrow ab+bc+ca\ge3\)

Áp dụng BĐT Cosi ta có:

\(ab+bc+ca\ge3\sqrt[3]{ab.bc.ca}\)

\(ab+bc+ca\ge3\) (2)

Từ (1) và (2)

=> ĐPCM

AH
Akai Haruma
Giáo viên
3 tháng 11 2017

Lời giải:

\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)

\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)

\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)

Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)

\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)

\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)

Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)

Ta có đpcm.

22 tháng 4 2018

Cách khác:

Đặt \(A=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\)

\(A=\left(1+\dfrac{a+b}{a}\right)\left(1+\dfrac{a+b}{b}\right)\)

\(A=\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

\(A=4+2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+1\)

\(A\ge4+2\cdot2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}+1=9\left(AM-GM\right)\left(đpcm\right)\)

22 tháng 4 2018

( 1 + \(\dfrac{1}{a}\))\(\left(1+\dfrac{1}{b}\right)\) ≥ 9

Biến đổi VT Ta có : VT = \(\dfrac{a+1}{a}.\dfrac{b+1}{b}\)

= \(\dfrac{2a+b}{a}.\dfrac{2b+a}{b}\)

=\(\left(2+\dfrac{b}{a}\right)\left(2+\dfrac{a}{b}\right)\)

= 4 + \(\dfrac{2a}{b}+\dfrac{2b}{a}+\dfrac{b}{a}.\dfrac{a}{b}\)

= 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ( *)

Áp dụng BĐT : \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2( x > 0 ; y > 0) ( ** )

Từ ( * ; **) ⇒ 5 + 2( \(\dfrac{a}{b}+\dfrac{b}{a}\) ) ≥ 5 + 4 = 9 ( đpcm )

23 tháng 3 2017

Nội suy Sửa đề làm cho bạn

Bài 1:

\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế

\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử

\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)

Thu gọn có thể không cần

\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm

Đẳng thức khi a=b=c

=> dpcm

23 tháng 3 2017

a=b=c sai rồi --> gấp thì đề cũng cho chuẩn

NV
30 tháng 11 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\Rightarrow ab+bc+ac=1\)

Ta có \(1+a^2=a^2+ab+bc+ac=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)

Tương tự ta được \(1+b^2=\left(a+b\right)\left(b+c\right)\); \(1+c^2=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow A=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) \(\Rightarrow A\) là số chính phương

17 tháng 7 2017

Từ \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)

\(=>\dfrac{a}{b-c}+1+\dfrac{b}{c-a}+1+\dfrac{c}{a-b}+1=3\)

\(=>\dfrac{a}{b-c}-\dfrac{b}{a-c}-\dfrac{c}{b-a}=0\)

\(=>\dfrac{a}{b-c}=\dfrac{b}{a-c}+\dfrac{c}{b-a}=\dfrac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

Nhân cả 2 vế với \(\dfrac{1}{b-c}\) ta được

\(\dfrac{a}{\left(b-c\right)^2}=\dfrac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có:

\(\dfrac{b}{\left(c-a\right)^2}=\dfrac{c^2-bc+bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right)\)

\(\dfrac{c}{\left(a-b\right)^2}=\dfrac{a^2-ca+cb-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng theo vế (1);(2);(3) ta có ĐPCM

CHÚC BẠN HỌC TỐT.........