\(\frac{a+b}{2}>=\sqrt{ab}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2016

\(\left(\sqrt{a}+\sqrt{b}\right)^2>=0\)

=>a+b >=2cawn ab

(a+b)/2>=căn ab

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

22 tháng 5 2017

mời anh giúp em câu này

(x2+1)2+3x (x2+1)2+2x2=0

 

 

x3+6x+12x +8x3 -21=0

đó 2 câu này thôi

6 tháng 7 2016

Trả lời hộ mình đi

7 tháng 8 2020

CM cái sau: 

Ta có: \(a+\frac{1}{a}=\frac{a}{1}+\frac{1}{a}\ge2\sqrt{\frac{a}{1}.\frac{1}{a}}=2.1=2\) (bất đẳng thức Cauchy)

Chứng minh: 

\(\left(a-b\right)^2\ge0\left(\forall a,b\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

(áp dụng vào cái trên)

7 tháng 8 2020

Dấu "=" xảy ra khi:

\(a=\frac{1}{a}\Leftrightarrow a^2=1\Rightarrow a=1\left(a>0\right)\)

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

15 tháng 12 2017

Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)

\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)

\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)

\(\Leftrightarrow ab+bc+ca\le3\)

\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Đến đây dễ rồi để YẾN tự làm

28 tháng 11 2017

 Câu trả lời hay nhất:  Bài này áp dụng BĐT Cauchy (Cô-si) cho 2 số. 

Ta có: a^2/b + b >= 2.căn[(a^2/b).b] = 2.căn(a^2) = 2|a| >= 2a 
Tương tự, b^2/c + c >= 2|b| >= 2b 
................c^2/a + a >= 2|c| >= 2c 

Cộng vế với vế, ta được: 
a^2/b + b^2/c + c^2/a + a + b + c >= 2a + 2b + 2c 
<=> a^2/b + b^2/c + c^2/a >= a + b + c (điều phải chứng minh)

k cho mk nha

28 tháng 11 2017

 doc sai de a