Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
Ta có: (3a+2b)-2(10a+b) = -17a chia hết cho 17
the bài ra: 3a+2b chia hết cho17 =>2(10a+b) chia hết cho 17
mà 2 không chia hết cho 17 =>10a+b chia hết cho17 => điều phải chứng minh
Đặt: 3a+2b=x và 10a+b=y
Xét hệ thức:
x-2y =3a+2b-2.(10a+b)
=3a+2b-20a-2b
=(3a-20a)+(2b-2b)
=a.(3-20)+0
=a.(-17) chia hết cho 17 (1)
Mà 3a+2b chia hết cho 13
=> 3a chia hết cho 17 (2)
Từ (1) và (2) => 10a+b chia hết cho 17 (đpcm)
Có sai đề ko
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
a, Ta có: 7a5b1 \(⋮\)3 => 7 + a + 5 + b + 1 \(⋮\)3
=> 13 + a + b \(⋮\)3
=> a + b chia 3 dư 2 (1)
Mà a - b = 4 nên 4 \(\le\) a \(\le\) 9
0 \(\le\) b \(\le\) 5
Suy ra 4 \(\le\)a + b \(\le\)14 (2)
Mặt khác a - b chẵn nên a + b chẵn (3)
Từ (1);(2) và (3) suy ra a + b \(\in\){8;14}
+) Với a + b = 8 ; a - b = 4 => a = 6, b = 2
+) Với a + b = 14 ; a - b = 4 => a = 9, b = 5
Vậy...
b, Giả sử 10a + b \(⋮\)17
=> 2(10a + b) \(⋮\)17
=> 2(10a + b) - (3a + 2b) \(⋮\)17
=> 20a + 2b - 3a - 2b \(⋮\)17
=> 17a \(⋮\)17 (đúng)
=> Giả sử đúng
Vậy 10a + b \(⋮\)17
Số 7a5b1 đang có tổng là 13
Vì thế:
Dự đoán:
nếu 5 -1 = 4 mà bên kia lại là 19 thì sai
nếu 6 - 2 = 4 thì bên kia lại là 21 là đúng
Vì thế a = 6 và b = 4
a/
2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)
17(x+y) chia hết cho 17
2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Các trường hợp khác tương tự
1)
Ta có : \(6a+9b=3.\left(2a+3b\right)\)(đặt 3 làm thừa số chung )
Vì \(3⋮3\)
\(\Leftrightarrow3.\left(2a+3b\right)⋮3\left(đpcm\right)\)
2)
Ta có : \(2a+4b=2a+2b+2b⋮3\)
\(4a+2b=2a+2a+2b\)
Vì \(\hept{\begin{cases}2a⋮3\\2b⋮3\end{cases}}\Rightarrow2a+2a+2b⋮3\Leftrightarrow\left(4a+2b\right)⋮3\)
3)
Ta có : \(\overline{aaa}=a.111=a.3.37\)
Vì 37 chia hết cho 37
<=> a.3.37 chia hết cho 37
<=> \(\overline{aaa}⋮37\)
Đặt :
\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)
\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)
Vì \(17a⋮17\)
\(\Leftrightarrow2y-x⋮17\)
Mà \(x⋮17\)
\(\Leftrightarrow2y⋮17\)
\(\Leftrightarrow2\left(10a+b\right)⋮17\)
\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)
\(\Leftrightarrowđpcm\)
Ta có:
\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)
Vì \(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)