Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : a+b=4 => (a+b)2=16 =>a2+b2=16-2ab=16-4=12
=> \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)\)
=12((a2+b2)2-3a2b2=12(122-3.16)=1152
b) \(2\left(a^2+b^2\right)=\left(a+b\right)^2\)
\(\Leftrightarrow2\left(a^2+b^2\right)=a^2+b^2+2ab\\ \Leftrightarrow a^2+b^2-2ab=0\\ \Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow a-b=0\Rightarrow a=b\)
Bài 1:
a) \(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)x=14\) (1)
\(\Leftrightarrow2x^2-4x+8+x^3-2x^2+4x+\left(-3-x^2\right)x=14\)
\(\Leftrightarrow8+x^3-3x-x^3=17\)
\(\Leftrightarrow8-3x=14\)
\(\Leftrightarrow-3x=14-8\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2\right\}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\) (2)
\(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-\left(4x-15x^2+4\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\dfrac{43}{42}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{43}{42}\right\}\)
Bài 2: tự làm đi :)))))))))))
Bài 3:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
3. Ta có: n(2n - 3) - 2n(n+1) = 2n\(^{^2}\) - 3n - 2n\(^{^2}\) - 2n
= -5n
Mà -5n \(⋮\) 5
Vậy n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
Ta có:
\(a:5\) dư 3
\(\Rightarrow a=5k+3\)
\(b:5\) dư 1
\(\Rightarrow b=5k+1\)
\(\Rightarrow a.b=\left(5k+3\right)\left(5k+1\right)\)
\(\Rightarrow a.b=25k^2+20k+4\)
\(\Rightarrow a.b=5\left(4k^2+4k\right)+4\)
Vì \(5\left(4k^2+4k\right)⋮5\)
\(4:5\) dư 4
\(\Rightarrow5\left(4k^2+4k\right)+4:5\) dư 4
\(\Rightarrow a.b:5\) dư 4
Sorry bạn , mik lộn :
a : 5 dư 3 \(\Rightarrow a=5k+3\left(k\ge0\right)\)(1)
b : 5 dư 1 \(\Rightarrow b=5k_1+1\left(k\ge0\right)\) (2)
Từ (1) (2)
\(\Rightarrow ab=\left(5k+3\right)\left(5k_1+1\right)\)
\(\Rightarrow ab=25kk_1+15k_1+5k+3\)
\(\Rightarrow ab=5\left(5kk_1+3k_1+k\right)+3\)
\(\Rightarrow ab:5\) dư 3
a chia 5 dư 1 => a có dạng 5k+1
b chia 5 dư 2 => b có dạng 5k'+2
a.b=(5k+1)(5k'+2)=25kk'+10k+5k'+2
ta thấy \(25kk'⋮5\)\(10k⋮5\)\(5k'⋮5\)'
nên ab chia 5 dư 2
c)
Gọi đa thức \(ax^3+bx^2+c\) là \(f\left(x\right)\).
Theo bài ra \(f\left(x\right)⋮x+2\) , ta có phương trình:
\(f\left(-2\right)=-8a+4b+c=0\)(1)
Gọi \(Q\left(x\right)\) là thương của đa thức \(f\left(x\right)\) khi chia \(x^2-1\) được dư là \(x+5\). Ta có:
\(f\left(x\right)=ax^3+bx^2+cx=\left(x^2-1\right).Q\left(x\right)+x+5\)(*)
Nghiệm của \(x^2-1\) là \(1\) và \(-1\). Thay nghiệm x=1 và x=-1 vào (*), ta có :
\(\left\{{}\begin{matrix}a.\left(-1\right)^3+b\left(-1\right)^2+c=0.Q\left(x\right)+\left(-1\right)+5=4\\a.1^3+b.1^2+c=0.Q\left(x\right)+1+5=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b+c=4\left(2\right)\\a+b+c=6\left(3\right)\end{matrix}\right.\)
Từ (1), (2) và (3), ta có HPT:
\(\left\{{}\begin{matrix}-8a+4b+c=0\\-a+b+c=4\\a+b+c=6\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=4\end{matrix}\right.\)
Vậy a=1;b=1 và c=4
b)
Gọi đa thức \(x^3+ax+b\) là \(f\left(x\right)\)
Gọi \(P\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x+1\) được dư 7.
Gọi \(Q\left(x\right)\) là thương khi chia đa thức \(f\left(x\right)\) cho \(x-3\) dư -5.
Theo bài ra ta có PT:
\(\left\{{}\begin{matrix}x^3+ax+b=\left(x+1\right).P\left(x\right)+7\\x^3+ax+b=\left(x-3\right).Q\left(x\right)+\left(-5\right)\end{matrix}\right.\)(*)
Nghiệm của x+1 là -1 và nghiệm của x-3 là 3. Thay nghiệm x=-1 và x=3 vào (*) ta được:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\left(-1\right)+b=0.P\left(x\right)+7=7\\3^3+a3+b=0.Q\left(x\right)-5=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1-a+b=-7\\27+3a+b=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=8\\3a+b=-32\end{matrix}\right.\)
Giải HPT ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}a=-10\\b=-2\end{matrix}\right.\)
Vậy a=-10, b=-2
a.\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{y}{xy}+\dfrac{x}{xy}=\dfrac{x+y}{xy}\)
thay x+y=5 và xy=-2 vào đa thức trên ta có :
\(\dfrac{x+y}{xy}=\dfrac{5}{-2}\)=\(-\dfrac{5}{2}\)
a : 4 dư 2 \(\Rightarrow a=4k+2\left(k\ge0\right)\left(1\right)\)
b : 4 dư 1 \(\Rightarrow b=4k_1+1\left(k_1\ge0\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow ab=\left(4k+2\right)\left(4k_1+1\right)\)
\(\Rightarrow ab=16kk_1+8k_1+4k+2\)
\(\Rightarrow ab=4\left(4kk_1+2k_1+k\right)+2\)
\(\Rightarrow ab:4\) dư 2 \(\left(đpcm\right)\)