\(\in\) z. Cm: ab( \(a^4\) -
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

đề sai rồi cân tại C góc A=góc B=100 => A+B=200>180 độ

3 tháng 3 2017

Sai đề: phải là \(\Delta ABC\) cân tại A

17 tháng 7 2018

Ta có: 

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+2018}{b+2018}=\frac{b-a}{b+2018}\)

Do b+2018>b => \(\frac{b-a}{b}>\frac{b-a}{b+2018}\Rightarrow1-\frac{a}{b}>1-\frac{a+2018}{b+2018}\)\(\Rightarrow\frac{a}{b}< \frac{a+2018}{b+2018}\)

24 tháng 7 2017

3,

\(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{\dfrac{-5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}=\dfrac{\left(-4\right)\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}{5\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}=\dfrac{-4}{5}\)

Vậy \(M=\dfrac{-4}{5}\)

2,

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=\dfrac{a+b+c+2011}{a+b+c+2011}=1\)

\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\\ \dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)

Từ (1) và (2) ta có: \(a=c\)

\(\Rightarrow a+b-c=a+a-a=a\)

1)

b)

\(A=27^{20}+3^{61}+9^{31}\\ =\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\\ =3^{60}+3^{61}+3^{62}\\ =3^{60}\cdot\left(1+3+3^2\right)\\ =3^{60}\cdot\left(1+3+9\right)\\ =3^{60}\cdot13⋮13\)

Vậy \(A⋮13\)

a,

\(\left(-99\right)^{20}=\left(-99\right)^{2\cdot10}=\left[\left(-99\right)^2\right]^{10}=9801^{10}\\ 9999^{100}=\left(9999^{10}\right)^{10}>\left(9999^{10}\right)^1=9999^{10}\)

\(9801^{10}< 9999^{10}< \left(9999^{10}\right)^{10}=9999^{100}\Rightarrow\left(-99\right)^{20}< 9999^{100}\)

Vậy \(\left(-99\right)^{20}< 9999^{100}\)

24 tháng 7 2017

1/

a) (-99)20 = 9920

Vì 99 < 9999

20 < 100

Nên 9920 < 9999100

Vậy (-99)20 < 9999100

b) \(A=27^{20}+3^{61}+9^{31}\)

\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)

\(=3^{60}+3^{61}+3^{62}\)

\(=3^{60}\left(1+3+3^2\right)\)

\(=3^{60}.13⋮13\)

Vậy A chia hết cho 13.

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=1\)

\(\Rightarrow\dfrac{a}{b}=1;\dfrac{b}{c}=1\Rightarrow a=b=c\) (*)

Thay (*) vào a + b - c: a + a - a = a

Vậy a + b - c = a.

3. \(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{-\dfrac{5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}\)

\(=\dfrac{4\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}{-5\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}\)

\(=-\dfrac{4}{5}\)

5 tháng 3 2017

O x y z A E B F C

Vẽ hình hơi xấu - thông cảm

a) Xét \(\Delta\) OAB và \(\Delta\) OAC có :

góc B = góc C = 90o

góc xOz = góc yOz ( Oz là p/giác của góc xOy )

OA chung

\(\Rightarrow\Delta OAB=\Delta OAC\) ( c.huyền - g.nhọn )

\(\Rightarrow AB=AC\) ( 2 cạnh t/ứng )

8 tháng 3 2017

Hoàng Thị Ngọc AnhNguyễn Huy TúAkai HarumaHoang Hung Quansoyeon_Tiểubàng giảiTrần Việt Linh giúp mình câu b,c đi

1 tháng 8 2020

đề bài kiểu j vậy bn

7 tháng 8 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\)

7 tháng 8 2019

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{\left(bk\right)^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\) (1)

Tương tự, ta cũng có \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(k+1\right)^2}{k^2+1}\) (2)

Từ (1), (2) suy ra \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\)