Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)
\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)
\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)
\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Từ đó a = -b hoặc b = -c hoặc c = -a
Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)
Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)
Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}=\frac{a+b-c+b+c-a+a+c-b}{c+a+b}=\frac{a+b+c}{c+a+b}=1\)
Do đó: \(\frac{a+b-c}{c}=1\)\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b+c=3c\) (1)
\(\frac{b+c-a}{a}=1\)\(\Rightarrow b+c-a=a\)\(\Rightarrow b+c+a=3a\) (2)
\(\frac{a+c-b}{b}=1\)\(\Rightarrow a+c-b=b\)\(\Rightarrow a+c+b=3b\) (3)
Từ (1), (2), (3) \(\Rightarrow3a=3b=3c\)\(\Rightarrow a=b=c\)
Ta có: \(T=\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)
\(=\left(10+\frac{a}{a}\right)\left(4+\frac{2c}{c}\right)\left(2017+\frac{3a}{a}\right)\)
\(=\left(10+1\right)\left(4+2\right)\left(2017+3\right)\)
\(=11.6.2020=133320\)
p/s: làm thế này đúng không ta, mình hong chắc lắm
Ta có:
\(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)
\(=\left(\frac{2017}{c}+\frac{2017}{d}\right)\left(\frac{2017}{d}+c\right)\left(c+d\right)\left(d+\frac{2017}{c}\right)\)
\(=\frac{2017}{c^2d^2}\left(c+d\right)^2\left(cd+2017\right)^2\)
\(=\frac{2017}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(1\right)\)
Ta lại có:
\(\left(a+b+c+d\right)^2\)
\(=\left(\frac{2017}{c}+\frac{2017}{d}+c+d\right)^2\)
\(=\frac{1}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow M=2017\)
LỜI GIẢI
a+cb+d=a−cb−da+cb+d=a−cb−d
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)
a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)
Từ (1)(1) và (2)(2) ta có:
ab=cdab=cd
Đặt:
ab=cd=kab=cd=k ⇒{a=bkc=dk⇒{a=bkc=dk
Thay vào tính