K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 7 2016
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Áp dụng BĐT AM - GM dạng ngược ta dễ có:
\(\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{2}{a+b+b+c}=\frac{2}{\left(a+2b+c\right)}\)
Tương tự:
\(\frac{1}{\sqrt{\left(b+c\right)\left(c+a\right)}}\ge\frac{2}{\left(b+2c+a\right)}\frac{1}{\sqrt{\left(c+a\right)\left(a+b\right)}}\ge\frac{2}{2\left(c+2a+b\right)}\)
Khi đó:
\(P\ge2\left(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\right)\)
\(\ge\frac{9}{2\left(a+b+c\right)}=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c=2
Gáy cach nua.
Chứng minh: \(\Sigma\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)}\)
Theo Holder, cần c.m
\(\frac{3^3}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(c+a\right)+\left(c+a\right)\left(a+b\right)}\ge\frac{81}{4\left(a+b+c\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Done