Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=1-2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2=1-2\left(ab+bc+ca\right)\)
Lại có:
\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)
\(\Rightarrow abc\le\frac{ab+bc+ca}{9}\)
Khi đó:
\(M\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
\(\ge\frac{9}{\left(a+b+c\right)^2}+\frac{7}{\frac{\left(a+b+c\right)^2}{3}}=21+9=30\)
Dấu "=" xảy ra tại \(a=b=c=\frac{1}{3}\)
Ta có : \(p=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\)
Áp dụng bất đẳng thức AM - GM ta có :
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge2\sqrt{\frac{bc}{a^2\left(b+c\right)}.\frac{b+c}{4ab}}=\frac{1}{a}\)
\(\frac{ac}{b^2\left(a+c\right)}+\frac{a+c}{4ac}\ge4\sqrt{\frac{ac}{b^2\left(a+c\right)}.\frac{a+c}{4ac}}=\frac{1}{b}\)
\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge2\sqrt{\frac{ab}{c^2\left(a+b\right)}.\frac{a+b}{4ab}}=\frac{1}{c}\)
Cộng vế với vế ta được \(p+\frac{1}{4c}+\frac{1}{4a}+\frac{1}{4b}+\frac{1}{4a}+\frac{1}{4c}+\frac{1}{4b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow p+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow p\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{2a.2b.2c}}=\frac{3}{\sqrt[3]{8abc}}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Xét: \(\frac{bc}{a^2b+ca^2}=\frac{bc}{a\cdot abc\cdot\frac{1}{c}+a\cdot abc\cdot\frac{1}{b}}=\frac{b^2c^2}{ab+ca}\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}\frac{ca}{b^2c+ab^2}=\frac{c^2a^2}{ab+bc}\\\frac{ab}{c^2a+bc^2}=\frac{a^2b^2}{ca+bc}\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{bc}{a^2b+ca^2}=\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\)
Ta thấy\(\Sigma_{cyc}\frac{b^2c^2}{ab+ca}\) có dạng: \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{1}{2}\left(a+b+c\right)\)
Bước cuối Cô-si ba số và kết hợp điều kiện abc=1 là xong
P=abc/(2bc+c^2)+abc/(2ac+a^2)+abc/(2ab+b^2)
P=1/(2bc+c^2)+1/(2ac+a^2)+1/(2ab+b^2)
áp dụng BĐT cô-si swat ta có
P>=(1+1+1)^2/(a+b+c^2)=9/(a+b+c)^2>=9/((3 căn bậc 3 abc)^2=9/9=1
dấu = xảy ra khi a=b=c=1