Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{a+a+a+a+b+c}+\frac{1}{a+b+b+b+b+c}+\frac{1}{a+b+c+c+c+c}\)
\(\Rightarrow A\le\frac{1}{36}\left(\frac{4}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{4}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
\(\Rightarrow A\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}\)
Dấu "=" xảy ra khi \(a=b=c=3\)

Ta sẽ sử dụng đánh giá \(x^3+\frac{1}{x^3}\ge\frac{1}{\left(1+9^3\right)^2}\left(x+\frac{81}{x}\right)^3\)
Dấu "=" xảy ra <=> x=\(\frac{1}{3}\)
Sử dụng đánh giá trên ta có: \(\hept{\begin{cases}\sqrt[3]{a^3+\frac{1}{a^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+\frac{81}{a}\right)\\\sqrt[3]{b^3+\frac{1}{b^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(b+\frac{81}{b}\right)\\\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(c+\frac{81}{c}\right)\end{cases}}\)
Cộng theo vế ta được \(P=\sqrt[3]{a^3+\frac{1}{a^3}}+\sqrt[3]{b^3+\frac{1}{b^3}}+\sqrt[3]{c^3+\frac{1}{c^3}}\ge\frac{1}{\sqrt[3]{\left(1+9^3\right)^2}}\left(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\right)\)
Ta lại có: \(a+b+c+\frac{81}{a}+\frac{81}{b}+\frac{81}{c}\ge a+b+c+\frac{729}{a+b+c}=a+b+c+\frac{1}{a+b+c}+\frac{729}{a+b+c}\)
\(\ge2+728=730\)
=> \(P\ge\frac{730}{\sqrt[3]{\left(1+9^3\right)^2}}=\sqrt[3]{730}\)
Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)
Hey Hải Nhật, mk có bảo bạn giải đâu ạ? Lời giải này thì mk biết lâu r, (chép trong tài liệu), nhưng mình hỏi cách tìm bđt phụ kia cơ mà

Từ giả thiết và BĐT AM-GM suy ra:\(\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\)3
Ta có:
P\(\ge\)\(\frac{2a^3}{3\left(a^2+b^2\right)}\)+\(\frac{2b^3}{3\left(c^2+b^2\right)}\)+\(\frac{2c^3}{3\left(a^2+c^2\right)}\)
=\(\frac{2}{3}\)(\(\frac{a\left(a^2+b^2\right)-ab^2}{\left(a^2+b^2\right)}\)+\(\frac{b\left(c^2+b^2\right)-bc^2}{\left(c^2+b^2\right)}\)+\(\frac{a\left(a^2+c^2\right)-ca^2}{\left(a^2+c^2\right)}\))
=\(\frac{2}{3}\)(a+b+c-\(\frac{ab^2}{\left(a^2+b^2\right)}\)-\(\frac{bc^2}{\left(c^2+b^2\right)}\)-\(\frac{ca^2}{\left(a^2+c^2\right)}\))
\(\ge\)\(\frac{2}{3}\)(a+b+c-\(\frac{a}{2}\)-\(\frac{b}{2}\)-\(\frac{c}{2}\))
=\(\frac{2}{3}\).\(\frac{a+b+c}{2}\)=\(\frac{a+b+c}{3}\)=\(\frac{\left(a+1\right)+\left(b+1\right)+\left(c+1\right)}{3}\)-1
\(\ge\)\(\frac{3\sqrt[3]{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}{3}\)-1\(\ge\)2
Vậy:MinP=2 khi a=b=c=2
cách này dễ hiểu hơn nè :
Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
Ta có : \(1\ge\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)
\(\Leftrightarrow1\ge\frac{9}{a+b+c+3}\)\(\Leftrightarrow a+b+c+3\ge9\)\(\Leftrightarrow a+b+c\ge6\)
\(\frac{a^3}{a^2+ab+b^2}=\frac{a\left(a^2+ab+b^2\right)-ab^2-a^2b}{a^2+ab+b^2}=a-\frac{ab^2+a^2b}{a^2+ab+b^2}\ge a-\frac{ab\left(a+b\right)}{3ab}=a-\frac{a+b}{3}\)
Tương tự : \(\frac{b^3}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\); \(\frac{c^3}{c^2+ac+a^2}\ge c-\frac{a+c}{3}\)
Cộng cả 3 vế , ta được : \(P\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{1}{3}\left(a+b+c\right)\ge\frac{1}{3}.6=2\)
Vậy GTNN của P là 2 \(\Leftrightarrow a=b=c=2\)

a) ta có \(S=a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Áp dụng bất đẳng thức cô si ta có \(a+\frac{1}{4a}\ge2\sqrt{\frac{a.1}{4a}}=2.\frac{1}{2}=1\)
tương tự ta có \(b+\frac{1}{4b}\ge1;c+\frac{1}{4c}\ge1\)
=> \(a+\frac{1}{4a}+b+\frac{1}{4b}+c+\frac{1}{4c}\ge3\)
mặt khác Áp dụng bất đẳng thức svác sơ ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{\frac{3}{2}}=6\) (vì a+b+c<=3/2)
cộng từng vế ta có \(S\ge9\)
dấu = xảy ra <=> a=b=c=1/2
câu 2 tương tự
chết quên khi mà cậu dùng svác sơ xong thì cậu phải nhân thêm 3/4 nữa rồi mới cộng vào để tính Smin

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

áp dụng AM-GM T a có
\(S=a+b+c+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge a+b+c+\frac{3}{\sqrt[3]{abc}}\)
\(\Rightarrow s\ge a+b+c+\frac{9}{a+b+c}\ge\frac{3}{21}+\frac{9}{1}.\frac{21}{3}=\frac{442}{7}\)
\(S_{min}=\frac{442}{7}\)khi a=b=c=1/21