Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
bài 2 tham khảo câu V đề thi vòng 1 trường THPT chuyên đại học sư phạm năm học 2013-2014
b2 \(\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=\sqrt{x}.\sqrt{1-\frac{1}{x}}+\sqrt{y}.\)\(\sqrt{y}.\sqrt{1-\frac{1}{y}}+\sqrt{z}.\sqrt{1-\frac{1}{z}}\)rồi dung bunhia là xong
A= \(\frac{1}{a^3}\)+ \(\frac{1}{b^3}\)+ \(\frac{1}{c^3}\)+ \(\frac{ab^2}{c^3}\)+ \(\frac{bc^2}{a^3}\)+ \(\frac{ca^2}{b^3}\)
Svacxo:
3 cái đầu >= \(\frac{9}{a^3+b^3+c^3}\)
3 cái sau >= \(\frac{\left(\sqrt{a}b+\sqrt{c}b+\sqrt{a}c\right)^2}{a^3+b^3+c^3}\)
Cô-si: cái tử bỏ bình phương >= 3\(\sqrt{abc}\)
=> cái tử >= 9abc= 9 vì abc=1
Còn lại tự làm
Bài 1:
a) Bạn xem lại đề bài hộ mình.
b) Thực hiện biến đổi tương đương:
\((x+y+z)^2\leq 3(x^2+y^2+z^2)\)
\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)\leq 3(x^2+y^2+z^2)\)
\(\Leftrightarrow 2(xy+yz+xz)\leq 2(x^2+y^2+z^2)\)
\(\Leftrightarrow 2(x^2+y^2+z^2)-2(xy+yz+xz)\geq 0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0\)
BĐT trên luôn đúng do \(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-z)^2\geq 0\\ (z-x)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z\)
Bài 2:
\(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
\(\Rightarrow 2A=\sqrt{16x+8\sqrt{x}+4}+\sqrt{16y+8\sqrt{y}+4}+\sqrt{16z+8\sqrt{z}+4}\)
\(=\sqrt{18x-2(\sqrt{x}-2)^2+12}+\sqrt{18y-2(\sqrt{y}-2)^2+12}+\sqrt{18z-2(\sqrt{z}-1)^2+12}\)
\(\Rightarrow 2A\leq \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}(1)\)
Áp dụng BĐT Bunhiacopxky:
\((\sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12})^2\leq [(18x+12)+(18y+12)+(18z+1)](1+1+1)\)
\(=3[18(x+y+z)+36]=756\)
\(\Rightarrow \sqrt{18x+12}+\sqrt{18y+12}+\sqrt{18z+12}\leq \sqrt{756}=6\sqrt{21}(2)\)
Từ \((1); (2)\Rightarrow 2A\leq 6\sqrt{21}\Rightarrow A\leq 3\sqrt{21}\)
Vậy \(A_{\max}=3\sqrt{21}\). Dấu bằng xảy ra khi \(x=y=z=4\)
1.a) A=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2+\sqrt{12}+\sqrt{16-8\sqrt{2}+2}}}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\left(1+\sqrt{3}\right)^2}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-1-\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{2-\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{2\left(2-\sqrt{3}\right)}}\)
=\(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
=\(\sqrt{6+2\sqrt{\left(1-\sqrt{3}\right)^2}}\)
=\(\sqrt{6+2-2\sqrt{3}}\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
Ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với \(\left(\sqrt{x^2+1}-x\right),\) ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{x^2+1}-x\right)\left(y+\sqrt{y^2+1}\right)=\left(\sqrt{x^2+1}-x\right)\)
\(\Leftrightarrow\) \(y+\sqrt{y^2+1}=\sqrt{x^2+1}-x\)
\(\Leftrightarrow\) \(x+y=\sqrt{x^2+1}-\sqrt{y^2+1}\left(1\right)\)
Mặt khác, \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Nhân hai vế của đẳng thức với \(\left(\sqrt{y^2+1}-y\right),\) ta có:
\(\left(x+\sqrt{x^2+1}\right)\left(\sqrt{y^2+1}-y\right)\left(y+\sqrt{y^2+1}\right)=\sqrt{y^2+1}-y\)
\(\Leftrightarrow\) \(x+\sqrt{x^2+1}=\sqrt{y^2+1}-y\)
\(\Leftrightarrow\) \(x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\) suy ra được \(x+y=0\)