\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)
tìm GT...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 7 2020

\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\Rightarrow a^2b^2c^2\ge27\)

\(T=1+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+a^2b^2c^2\)

\(T\ge1+3\sqrt[3]{a^2b^2c^2}+3\sqrt[3]{\left(a^2b^2c^2\right)^2}+a^2b^2c^2\)

\(T\ge1+3\sqrt[3]{27}+3\sqrt[3]{27^2}+27=...\)

Dấu "=" xảy ra khi \(a=b=c=...\)

NV
5 tháng 7 2020

\(b^2+c^2\le a^2\Rightarrow\frac{a^2}{b^2+c^2}\ge1\)

\(A\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}=\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+\frac{3a^2}{b^2+c^2}\)

\(A\ge2\sqrt{\frac{a^2\left(b^2+c^2\right)}{a^2\left(b^2+c^2\right)}}+3.1=5\)

\(A_{min}=5\) khi \(b=c=\frac{a}{\sqrt{2}}\)

NV
1 tháng 6 2020

\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{3}{\sqrt[3]{a^2b^2c^2}}\Rightarrow\sqrt[3]{a^2b^2c^2}\ge3\Rightarrow a^2b^2c^2\ge27\)

\(A=1+a^2b^2c^2+a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(A\ge1+27+3\sqrt[3]{a^2b^2c^2}+3\left(\sqrt[3]{a^2b^2c^2}\right)^2\)

\(A\ge1+27+3.3+3.3^2=...\)

Dấu "=" xảy ra khi \(a=b=c=...\)

NV
2 tháng 11 2019

\(A\ge7\left(a+b+c\right)^2+12\left(a+b+c\right)^2+\frac{18135}{a+b+c}\)

Đặt \(a+b+c=x\Rightarrow0< x\le2\)

\(A\ge19x^2+\frac{18135}{x}=19x^2+\frac{152}{x}+\frac{152}{x}+\frac{17831}{x}\)

\(A\ge3\sqrt[3]{\frac{19.152.152x^2}{x^2}}+\frac{17831}{2}=\frac{18287}{2}\)

13 tháng 8 2020

đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

áp dụng bđt Bunhiacopxki dạng phân thức ta được

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)

phép chứng minh sẽ hoàn tất nếu ta chứng minh được

\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

hay ta cần chứng minh

\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)

khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh

NV
13 tháng 6 2020

\(\Leftrightarrow\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2\le1\)

Đặt \(\left[\left(\frac{b}{a}\right)^2;\left(\frac{c}{a}\right)^2\right]=\left(x;y\right)\Rightarrow x+y\le1\)

\(P=x+y+\frac{1}{y}+\frac{1}{x}\ge x+y+\frac{4}{x+y}\)

\(P\ge x+y+\frac{1}{x+y}+\frac{3}{x+y}\ge2\sqrt{\frac{x+y}{x+y}}+\frac{3}{1}=5\)

\(p_{min}=5\) khi \(x=y=\frac{1}{2}\Leftrightarrow b=c=\frac{a}{\sqrt{2}}\)

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

19 tháng 2 2022

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)

Hoàn toàn tương tự ta có:

\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);

\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)

Cộng theo bất đẳng thức trên ta được:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Do đó:

\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)

\(\le\frac{1}{6\left(ab+bc+ca\right)}\)

Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)

1 tháng 8 2019

\(\frac{a^3}{\left(1-a\right)^2}+\frac{1-a}{8}+\frac{1-a}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1-a\right)^2}.\frac{\left(1-a\right)}{8}.\frac{1-a}{8}}=\frac{3a}{4}\)

Suy ra \(\frac{a^3}{1-a^2}\ge\frac{3a}{4}-\frac{\left(1-a\right)}{4}=\frac{4a-1}{4}\)

Tương tự hai BĐT còn lại rồi cộng theo vế:

\(A\ge\frac{4\left(a+b+c\right)-3}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)