\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)\(A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

=\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{a+b+c}{abc}\right)\)

mà a+b+c=0

\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{0}{abc}\right)=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

9 tháng 9 2017

cảm ơn bạnvui

29 tháng 11 2017

Ta có: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{2}{a}\)

\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{2}{a}\Leftrightarrow ab+ac=2bc\)

\(\dfrac{a+b}{a-b}+\dfrac{a+c}{a-c}=\dfrac{a^2-ac+ab-bc+a^2+ac-ab-bc}{a^2-ac-ab+bc}\)

\(=\dfrac{2a^2-2bc}{a^2-2bc+bc}=\dfrac{2a^2-2bc}{a^2-bc}=2\)

\(\Rightarrowđpcm\)

24 tháng 10 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=2^2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{c+a+b}{abc}\right)=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\) (do \(a+b+c=abc\))
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\). (đpcm).

24 tháng 10 2017

cảm ơn haha

8 tháng 9 2017

Ta có: \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)

Ta cần chứng minh: \(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=0\) thật vậy:

\(\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=\dfrac{2\left(a+b+c\right)}{abc}=\dfrac{2.0}{abc}=0\)Tức là:\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\left(đpcm\right)\)

29 tháng 11 2017

Bạn xét a+b+c=0 và a+b+c khác 0

28 tháng 9 2017

1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)

=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4

=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4

=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)

=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)

=> a2(b+c) + b2(c+a) + c2(a+b) = 0

Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^

3 tháng 5 2017

Ta có: \(A=\dfrac{b+c}{a}+\dfrac{c+a}{b}+\dfrac{a+b}{c}\)

\(=\left(\dfrac{b+c}{a}+1\right)+\left(\dfrac{c+a}{b}+1\right)+\left(\dfrac{a+b}{c}+1\right)-3\)

\(=\dfrac{a+b+c}{a}+\dfrac{a+b+c}{b}+\dfrac{a+b+c}{c}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)

\(=\left(a+b+c\right).0-3=-3\)

Vậy A = -3

3 tháng 5 2017

Nguyễn Huy Tú phải là -3 chứ

7 tháng 5 2017

Ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

=> \(\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{bc}{a+b}=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a\left(\dfrac{b}{b+c}+\dfrac{c}{b+c}\right)+b\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+c\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}+a+b+c=a+b+c\)

<=> \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\) thì \(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

7 tháng 5 2017

cảm ơn bn nhiều nha, bn giỏi quá