Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\left(\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\right).\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{a}{\left(c-a\right)\left(b-c\right)}+\frac{b}{\left(c-a\right)\left(a-b\right)}+\frac{b}{\left(c-a\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a\left(c-a\right)+a.\left(a-b\right)+b.\left(a-b\right)+b.\left(b-c\right)+c.\left(b-c\right)+c.\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{ac-a^2+ab-ac+ba-b^2+b^2-bc+bc-c^2+c^2-ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+0=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{b-c}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ab}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+bc}{\left(c-a\right)\left(a-b\right)\left(b-c\right)}\)
Cộng các đẳng thức trên ta được:
\(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)\(\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+bc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy \(\frac{a}{\left(b-c\right)^2}\)\(+\frac{b}{\left(c-a\right)^2}\)\(+\frac{c}{\left(a-b\right)^2}=\)0 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Jungkookie - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Em mới lớp 7 nên chỉ biết giải bài 2 thôi
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{a+c-b}{b}+2=\frac{c+b-a}{a}+2\)
\(=\frac{a+b}{c}-1+2=\frac{a+c}{b}-1+2=\frac{c+b}{a}-1+2\)
\(=\frac{a+b}{c}+1=\frac{a+c}{b}+1=\frac{c+b}{a}+1\)
\(=\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\) Thao vào P ta được :
\(P=\frac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a^3}=\frac{2a.2a.2a}{a^3}=\frac{8a^3}{a^3}=8\)
1
xét hiệu \(x^5+y^5-x^4y-xy^4=x^4\left(x-y\right)-y^4\left(x-y\right)\)
\(=\left(x^4-y^4\right)\left(x-y\right)=\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)^2\)
tự lập luộn nha \(\Rightarrow x^5+y^5-x^4y-xy^4\ge0\)
\(\Rightarrow x^5+y^5\ge x^4y+xy^4\)
Đặt: \(A=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\)
\(\Leftrightarrow A=\frac{ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)}{abc}\)
\(\Leftrightarrow abc\cdot A=ab\left(a-b\right)+bc\left[\left(b-a\right)+\left(a-c\right)\right]+ca\left(c-a\right)\)
\(\Leftrightarrow abc\cdot A=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)
\(\Leftrightarrow abc\cdot A=b\left(a-b\right)\left(a-c\right)+c\left(c-a\right)\left(a-b\right)\)
\(\Leftrightarrow abc\cdot A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
\(\Rightarrow A=-\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\) (1)
Đặt: \(B=\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\)
\(\Leftrightarrow B=\frac{a\left(a-b\right)\left(c-a\right)+b\left(a-b\right)\left(b-c\right)+c\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c-a\right)\cdot B=a\left(a-b\right)\left(c-a\right)-\left(c+a\right)\left(a-b\right)\left(b-c\right)+c\left(b-c\right)\left(c-a\right)\)
\(=a\left(a-b\right)\left(c-a\right)-c\left(a-b\right)\left(b-c\right)-a\left(a-b\right)\left(b-c\right)+c\left(b-c\right)\left(c-a\right)\)
\(=a\left(a-b\right)\left(2c-a-b\right)+c\left(b-c\right)\left(b+c-2a\right)\)
\(=3ac\left(a-b\right)-3ac\left(b-c\right)\)
\(=3ac\left(a+c-2b\right)=-9abc\)
\(\Rightarrow B=-\frac{9abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\Rightarrow A\cdot B=9\)