Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay ab+bc+ac=1 vào 1+a^2=ab+bc+ca+a^2=b*(a+c)+a*( a+c)=(a+b)*(a+c)
tương tự 1+b^2=(a+b)*(b+c);1+c^2=(a+c)*(b+c)
mẫu số của A=(a+b)^2*(b+c)^2*(c+a)^2=Tử số của A
=> A=1
\(\left(a+b+c\right)^2=3a^2+3b^2+3c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
\(\Rightarrow P=a^2+\left(a+2\right)\left(a+a\right)+2020\)
\(\Rightarrow P=3a^2+4a+2020=3\left(a+\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)
\(P_{min}=\frac{6056}{3}\) khi \(a=-\frac{2}{3}\)
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)_{ }\)
\(a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
Do đó \(P=a^2+\left(a+2\right)\left(2a\right)+2020\)
\(P=a^2+2a^2+4a+2020\)
\(P=3a^2+4a+2020\)
\(3P=9a^2+12a+6060\)
\(3P=\left(3a\right)^2+2.\left(3a\right).2+4+6060-4\)
\(3P=\left(3a+2\right)^2+6056\ge6056\Leftrightarrow3P\ge6056\Leftrightarrow P\ge\frac{6056}{3}\) Dấu "=" xảy ra khi a = b = c = \(-\frac{3}{2}\)
Vậy P đạt giá trị nhỏ nhất là 6056/3 khi a = b = c = -3/2