Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a) Vì \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\)
2
b) Ta có : \(\dfrac{-1}{3}=\dfrac{-16}{48};\dfrac{-1}{4}=\dfrac{-12}{48}\)
Ta có dãy sau : \(\dfrac{-16}{48};\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48};\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa \(\dfrac{-1}{3}\) và \(\dfrac{-1}{4}\) là :\(\dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}\)
1a ) Ta có : \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)
\(\Leftrightarrow\) \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\) \(\Rightarrow\) ad < bc
1b ) Như trên
2b) \(\dfrac{-1}{3}\) = \(\dfrac{-16}{48}\) ; \(\dfrac{-1}{4}\) = \(\dfrac{-12}{48}\)
\(\dfrac{-16}{48}\) < \(\dfrac{-15}{48}\) <\(\dfrac{-14}{48}\) < \(\dfrac{-13}{48}\) < \(\dfrac{-12}{48}\)
Vậy 3 số hữu tỉ xen giữa là.................
1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)
a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc
b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)
Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )
Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)
\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )
Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)
\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )
Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\)
\(\Rightarrow ad< bc\) ( đpcm. )
b) Vì \(b>0;d>0\) \(\Rightarrow b+d>0\)
Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Leftrightarrow ad< bc\) (*)
Thêm \(ab\) vào \(2\) vế (*), ta có:
\(ab+ad< ba+bc\)
\(a.\left(b+d\right)< b.\left(a+c\right)\)
\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)
Thêm \(cd\) vào \(2\) vế (*), ta được:
\(ad+cd< cb+cd\)
\(\left(a+c\right).d< c.\left(b+d\right)\)
\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( đpcm )
a)ta có \(\dfrac{a}{b}\)<\(\dfrac{c}{d}\)\(\Rightarrow\)\(\dfrac{a\times d}{b\times d}\)=\(\dfrac{c\times b}{d\times b}\)\(\Rightarrow\)a\(\times\)d=c\(\times\)d\(\Rightarrow\)ad=bc
b)theo câu a ta có \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad=bc\)(1)
Thêm ab vào 2 vế của (1):ad+ab=bc+ab
a(b+d)<b(a+c)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}\)(2)
Thêm cd vào 2 vế của (1):ad+cd<bc+cd
d(a+c)<c(b+d)\(\Rightarrow\)\(\dfrac{a+c}{b+d}< \dfrac{c}{d}\)(3)
Từ(2)và(3)\(\Rightarrow\)\(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
1) Nếu a/b>1 thì a/b>b/b<=>a>b
2)Nếu a>b thì a.z>b.z=>a/b>z/z<=>a/b>1
3)Nếu a/b<1 thì a/b<b/b<=>a<b
4)Nếu a<b=>a.z<b.z=>a/b<z/z<=>a/b<1
Ta có:
\(\dfrac{a}{b}=\dfrac{a.d}{b.d}\) và \(\dfrac{c}{d}=\dfrac{c.b}{d.b}\)
Từ trên suy ra :
Nếu ad < bc thì \(\dfrac{a}{b}< \dfrac{c}{d}\) \(\left(ĐPCM\right)\)
Do a,b,c thuộc N mà a,b,c<1
\(\Rightarrow\)a=0,b=0,c=0
Vậy ....
Trước tiên ta cần chứng minh : Với a<b thì : \(\dfrac{a}{b}< \dfrac{a+c}{b+c}\) với c là số nguyên dương.
\(\Leftrightarrow a.\left(b+c\right)< b.\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ab+bc\)
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow a< b\left(LĐ\right)\)
Áp dụng bổ đề đó ta có : \(\dfrac{a}{b+c}< \dfrac{a+a}{a+b+c}=\dfrac{2a}{a+b+c}\)
\(CMTT:\dfrac{b}{c+a}< \dfrac{2b}{a+b+c}\)
\(\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\)
Do đó : \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< \dfrac{2a+2b+2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\left(đpcm\right)\)
Lời giải:
Vì $b+c> a\Rightarrow 2(b+c)> a+b+c$
$\Rightarrow b+c> \frac{a+b+c}{2}$
$\Rightarrow \frac{a}{b+c}< \frac{2a}{a+b+c}(1)$
Hoàn toàn tương tự ta có:
$\frac{b}{c+a}< \frac{2b}{a+b+c}(2)$
$\frac{c}{a+b}< \frac{2c}{a+b+c}(3)$
Từ $(1); (2); (3)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2(a+b+c)}{a+b+c}=2$
Ta có đpcm.