\(\ne\) 0 thỏa mãn: \(\dfrac{ab}{a+b}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))

=> ac + bc - ab - ac = 0

=> bc - ab = 0

=> b(c - a) = 0

Mà b \(\ne0\) nên c - a = 0 => c = a

Tương tự ta có: a = b

Từ đó có: a = b = c

Thay vào M được:

\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

NV
9 tháng 12 2018

Do \(a,b,c\ne0\)

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

20 tháng 12 2017

Ta có:

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)

<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)

<=> \(b^2\cdot\left(a-c\right)=0\)

<=> \(a=c\)

Làm tương tự ta được \(b=a\) => a=b=c

=> M=1

16 tháng 10 2022

Câu 2: 

Theo đề, ta có: \(\dfrac{10a+b}{a+b}=\dfrac{10b+c}{b+c}\)

=>10ab+10ac+b^2+bc=10ab+10b^2+ac+bc

=>9ac-9b^2=0

=>ac-b^2=0

=>ac=b^2

=>a/b=b/c

17 tháng 5 2019

Có: x:y:z=2:3:5

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k.5k.3k=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)

=> x=...

y=...

z=...

17 tháng 5 2019

Có: VT\(\ge0\)( tự xét )

Theo bài ra lại có: VT\(\le0\)

=> VT=0

\(\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.............\\x_mp=y_mq\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x_1}{y_1}=\frac{q}{p}\\...............\\\frac{x_m}{y_m}=\frac{q}{p}\end{cases}}\)

\(\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=.....=\frac{x_m}{y_m}=\frac{q}{p}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

........................................................................

những bài khác chốc về làm nốt cho

15 tháng 11 2018

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=1\)

15 tháng 11 2018

ta có \(\left\{{}\begin{matrix}\dfrac{ab}{a+b}=\dfrac{ac}{a+c}\\\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a.\dfrac{b}{a+b}=a.\dfrac{c}{c+a}\\b.\dfrac{a}{a+b}=b.\dfrac{c}{b+c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a+b}=\dfrac{c}{c+a}\\\dfrac{a}{a+b}=\dfrac{c}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1+\dfrac{b}{a}=1+\dfrac{c}{a}\\1+\dfrac{a}{b}=1+\dfrac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{c}{b}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)

NV
27 tháng 12 2018

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\a=b\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Thay vào M ta được:

\(M=\dfrac{ab+bc+ac}{a^2+b^2+c^2}=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

27 tháng 12 2018

theo đề bài ta có:

\(\Rightarrow\dfrac{abc}{ab+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

\(\Rightarrow M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)