K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Theo giả thiết có : \(abc\ne0\)chia hai vế của phương trình cho \(abc\)có : \(\frac{2ab+3bc+4ac}{abc}=\frac{5abc}{abc}\Leftrightarrow\frac{2}{a}+\frac{3}{b}+\frac{4}{c}=1\)

Xét : (ở tử của p  tắc 7 = 4+3; 6= 4+2; 5=2+3 rồi nhóm nhân tử chung)

\(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}\)

\(=\frac{4}{a+b-c}+\frac{3}{a+b-c}+\frac{4}{b+c-a}+\frac{2}{b+c-a}+\frac{3}{c+a-b}+\frac{2}{c+a-b}\)

\(=4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{a+b-c}+\frac{1}{c+a-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\)

Nếu có \(x,y\left(x>0,y>0\right)\)ta luôn có \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

áp dụng vào P có

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

Cộng từng vế của 3 bất đẳng thức :

\(P\ge4.\frac{2}{b}+3.\frac{2}{a}+2.\frac{2}{c}=2\left(\frac{4}{b}+\frac{3}{a}+\frac{2}{c}\right)=2.5=10\)

Vậy \(P_{min}=10\)dấu "=" sảy ra khi \(a=b=c=\frac{9}{5}\)

1 tháng 6 2017

trên đầu mình viết nhầm nhe chỗ tổng phân số bằng 5 chứ ko phải 1 

11 tháng 6 2016

Từ giả thiết : \(2ab+3bc+4ac=5abc\)Vì a,b,c là độ dài ba cạnh của một tam giác nên chia cả hai vế cho \(abc>0\)được : 

\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

Áp dụng bất đẳng thức phụ sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y là số dương.  Dấu đẳng thức xảy ra <=> x = y  )

(Bạn tự chứng minh bằng biến đổi tương đương nhé!)

Ta có : \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}=\left(\frac{2}{c+a-b}+\frac{2}{b+c-a}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)\(=2\left(\frac{1}{c+a-b}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\ge2.\frac{4}{c+a-b+b+c-a}+3.\frac{4}{c+a-b+a+b-c}+4.\frac{4}{a+b-c+b+c-a}=\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=\frac{4}{c}+\frac{6}{a}+\frac{8}{b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)Vậy Min P = 10 \(\Leftrightarrow a=b=c=\frac{9}{5}\)

11 tháng 6 2016

2ab+3bc+4ca=5abc

chia hai vế với abc

=>\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

=> tự giải tiếp

\(2ab+3bc+4ca=5abc\)

Do a,b,c lần lượt là độ dài 3 cạnh của tam giác  

\(\Rightarrow\frac{2ab}{abc}+\frac{3bc}{abc}+\frac{4ca}{abc}=\frac{5abc}{abc}\Rightarrow\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x,y >0 (Dấu "=" xảy ra khi x=y) 

Ta có: \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)

\(=\left(\frac{2}{b+c-a}+\frac{2}{c+a-b}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)

\(=2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)

\(\ge\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)

Vậy ...

13 tháng 6 2020

Từ giả thiết : \(abc=b+2c\)

\(\Leftrightarrow\frac{b+2c}{bc}=a\)

\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)

\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Áp dụng (1) vào \(P\)\(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)

14 tháng 6 2020

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)

\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)

22 tháng 5 2018

Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)

Áp dụng AM - GM, ta có:

\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)

\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)

\(Đ\text{T}\Leftrightarrow3z=4y=6x\)

23 tháng 5 2018

Phải là 9z/y + 16y/z chứ ban

31 tháng 5 2016

Đặt  \(x=\frac{2}{a};\) \(y=\frac{4}{b};\)  \(z=\frac{1}{c}\)  

(Vì  \(a,b,c\in R^+\) nên suy ra  \(x,y,z>0\) )

Khi đó, điều kiện (giả thiết) đã cho trở thành  \(\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)=6\)   \(\left(\text{*}\right)\)

Với điều kiện mà  \(x,y,z\)  nhận được trên thì ta dễ dàng chứng minh được:  

\(x^3+y^3\ge xy\left(x+y\right)\)  

Do đó,   \(\frac{x^3+y^3}{xyz}\ge\frac{xy\left(x+y\right)}{xyz}=\frac{x+y}{z}\)

Mặt khác, nhờ vào bđt Cauchy và yếu tố chủ chốt là  \(x,y>0\), ta có đánh giá sau:  \(\frac{x}{y}+\frac{y}{x}\ge2\) 

nên  \(6=\frac{x^3+y^3}{xyz}+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge\frac{x+y}{z}+4\)

\(\Rightarrow\)  \(0< \frac{x+y}{z}\le2\)

\(--------------\)

Ta có:

\(P=\frac{x}{y+2z}+\frac{y}{2z+x}+\frac{4z}{x+y}\ge\frac{x^2}{xy+2xz}+\frac{y^2}{2yz+xy}+\frac{4z}{x+y}\)

\(\ge\frac{\left(x+y\right)^2}{2xy+2z\left(x+y\right)}+\frac{4z}{x+y}\ge\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}+2z\left(x+y\right)}+\frac{4z}{x+y}=\frac{2\left(x+y\right)}{x+y+4z}+\frac{4z}{x+y}\)

Tóm lại:  \(P\ge\frac{\frac{2\left(x+y\right)}{z}}{\frac{x+y}{z}+4}+\frac{4}{\frac{x+y}{z}}\)

\(--------------\)

Đặt  \(t=\frac{x+y}{z}\)  \(\left(0< t\le2\right)\). Ta biểu diễn bất đẳng thức trên dưới dạng biến  \(t\)  như sau:

\(P\ge\frac{2t}{t+4}+\frac{4}{t}=\frac{2t}{t+4}+\frac{4}{t+4}+\frac{8}{t\left(t+4\right)}+\frac{8}{t\left(t+4\right)}\ge3\sqrt[3]{\frac{64t}{t\left(t+4\right)^3}}+\frac{8}{t\left(t+4\right)}\)

\(\ge\frac{12}{t+4}+\frac{8}{t\left(t+4\right)}\ge\frac{12}{2+4}+\frac{8}{2.6}=\frac{8}{3}\)

Dấu  \("="\) xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=y\\\frac{x+y}{z}=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z\)  \(\Leftrightarrow\)  \(2a=b=4c\)

Vậy,  \(P\) đạt giá trị nhỏ nhất là  \(\frac{8}{3}\) khi  \(2a=b=4c\)

6 tháng 12 2020

Ta có:

\(Q=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

\(Q=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2ab}+\frac{\left(b+c\right)\left(b^2-bc+c^2\right)}{2bc}+\frac{\left(c+a\right)\left(c^2-ca+a^2\right)}{2ca}\)

\(Q=\frac{\left(a+b\right)\left[\left(a^2+b^2\right)-ab\right]}{2ab}+\frac{\left(b+c\right)\left[\left(b^2+c^2\right)-bc\right]}{2bc}+\frac{\left(c+a\right)\left[\left(c^2+a^2\right)-ca\right]}{2ca}\)

\(\ge\frac{\left(a+b\right)\left(2ab-ab\right)}{2ab}+\frac{\left(b+c\right)\left(2bc-bc\right)}{bc}+\frac{\left(c+a\right)\left(2ca-ca\right)}{ca}\) \(\left(Cauchy\right)\)

\(=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=3\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

10 tháng 3 2016

mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó 
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c) 
Trước hết ta xét bất đẳng thức sau với x,y >0 
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y) 
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y) 
Áp dụng cho bài toán ta có 
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b) 
bc/(b+c) ≥¼(c+d) 
ac/(a+c)≥¼(a+c) 
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c) 
Nếu bạn cho a+b+c=m thì ta có mình A=m/2 

17 tháng 7 2016

aaaaaaaaaaaaa

17 tháng 7 2016

Ta có:

\(2ab+6bc+2ca=7abc\)

Chia cả hai vế của phương trình trên cho  \(abc>0\), ta được:

\(\frac{6}{a}+\frac{2}{b}+\frac{2}{c}=7\)

Đặt  \(x=\frac{2}{a};\)  \(y=\frac{1}{b};\)  và  \(z=\frac{1}{c}\)  \(\Rightarrow\)  \(\hept{\begin{cases}x,y,z\in Z_+\\3x+2y+2z=7\end{cases}}\)

Khi đó, ta biểu diễn biểu thức  \(C\) dưới dạng ba biến  \(x,y,z\)  như sau:

\(C=\frac{4ab}{a+2b}+\frac{9ca}{a+4c}+\frac{4bc}{b+c}=\frac{4}{x+y}+\frac{9}{z+2x}+\frac{4}{y+z}\)

nên  \(C=\left[\frac{4}{x+y}+\left(x+y\right)\right]+\left[\frac{9}{z+2x}+\left(z+2x\right)\right]+\left[\frac{4}{y+z}+\left(y+z\right)\right]-\left(3x+2y+2z\right)\)

Áp dụng bất đẳng thức  \(AM-GM\) cho từng bộ số trong ngoặc luôn dương, ta có:

\(C\ge4+6+4-7=7\) (do  \(3x+2y+2z=7\) )

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{4}{x+y}=x+y\\\frac{9}{z+2x}=z+2x\\\frac{4}{y+z}=y+z\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z=1\)

Do đó,  \(a=2;\)  và  \(y=z=1\)

Vậy,  \(GTNN\)  của  \(C\)  đạt được là  \(7\)  \(\Leftrightarrow\)  \(\hept{\begin{cases}x=2\\y=z=1\end{cases}}\)