\(\dfrac{a}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

\(B=\dfrac{1}{1+a+ab}+\dfrac{1}{1+b+bc}+\dfrac{1}{1+c+ca}=\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+abc}+\dfrac{ab}{ab+abc+abca}\)

vì abc =1 nên B=\(\dfrac{1}{1+a+ab}+\dfrac{a}{a+ab+1}+\dfrac{ab}{ab+1+a}=\dfrac{1+a+ab}{a+1+ab}=1\)

chúc bạn học tót ^^

12 tháng 4 2018

uhm, cảm ơn bạn nhìu nheeeeeeee :)

28 tháng 2 2017

Chứng minh gì vậy ????

6 tháng 4 2019

Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)

 \(a^2+b^2>5c^2\)

\(\Rightarrow a^2+b^2>5a^2\)

\(\Rightarrow b^2>4a^2\)

\(\Rightarrow b>2a\)   (1)

           \(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)

                              \(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\)         (2)

Cộng (1) và (2) ta được:

  \(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )

\(\Rightarrow c< a\)

 Chứng minh tương tự :  \(c< b\)

Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)

\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)

\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{C}< 60^o\) (đpcm)

6 tháng 4 2019

cảm ơn bn nha!

17 tháng 7 2018

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)

\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)

\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)

\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)

\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)

\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)