\(a^2+b^2+c^2=3\). CMR: \(ab+bc+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 6 2020

Với mọi số thực a;b;c ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (1)

Tương tự: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+3\ge2a+2b+2c\) (2)

Cộng vế với vế (1) và (2)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

23 tháng 6 2020

Ta có 

\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)

\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)

                                                                            \(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)

\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)

\(=>=3+\frac{3+3}{2}=6\)

=> dpcm

cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm

23 tháng 6 2020

(a - b)^2 = a^2 - 2ab + b^2 > 0

(b - c)^2 = b^2 - 2bc + c^2 > 0

(c - a)^2 = c^2 - 2ac + a^2 > 0

=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac 

=> 6 > 2ab + 2bc + 2ac

=> 3 > ab + bc + ac    (1)

(a - 1)^2 = a^2 - 2a + 1 > 0

(b - 1)^2 = b^2 - 2b + 1 > 0

(c - 1)^2 = c^2 - 2c + 1 > 0

=>  a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c

=> 6 > 2a + 2b + 2c

=> 3 > a + b + c   và (1)

=> 6 > ab + ac + bc + a + b + c

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b

ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a

tương tự với các phân số còn lại:

ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c

đặt 1-a=x, 1-b=y, 1-c=z =>

yz/x + xz/y + xy/z

áp dụng bđt cô-sin =>

yz/x + xz/y >= 2 căn yz/x . xz/y=2z

tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y

=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4

=> H>= 2

=> bt trên >= 2

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2 

20 tháng 1 2019

Theo đề ra ta có :

 \(ab+bc+ca-\frac{\left(a+b+c\right)^2}{3}=-\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{6}\right]\le0\)

và : \(ab+bc+ca\le3\)

Suy ra : \(\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(b+c\right)}}\)

Áp dụng bất đẳng thức AM - GM ta được :

\(\frac{ab}{\sqrt{c^2+3}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{b+c}\right)\)

Thiết lập 2 đẳng thức tương tự, cộng về theo về, ta có :

\(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{c+a}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)+\left(\frac{ca}{b+c}+\frac{ab}{b+c}\right)\right]\)

và : \(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}\)

Mà : \(a+b+c=3\)( theo đề bài ) , suy ra đpcm

20 tháng 1 2019

ở dòng thứ 3 qua dòng thứ 4 bạn sai nhé. đáng lẽ là \(\ge\)

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

30 tháng 5 2018

Sử dụng BĐT Bunhiacopxki ta có: 

\(\sqrt{a^2+b^2c^2}=\sqrt{a^2\left(a^2+b^2+c^2\right)+b^2c^2}=\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}\ge\sqrt{\left(a^2+bc\right)^2}=a^2+bc\)

Tương tự: \(\sqrt{b^2+c^2a^2}\ge b^2+ca\)

                   \(\sqrt{c^2+a^2b^2}\ge c^2+ab\)

Cộng mại ta có: \(VT\ge ab+bc+ca+1\)

15 tháng 12 2017

Làm tạm vào đây vậy

từ gt dễ dàng => \(ab+bc+ca\le3\)

\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}\le\frac{ab}{\sqrt{c^2+ab+bc+ca}}=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng cô si ta có

\(\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)

Tương tự như vậy rồi ccộng vào nhá nhok