\(\frac{ab}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề:  Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng

\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)

Áp dụng bđt Cauchy-Schwarz ta có:

\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)

Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)

          \(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)

Cộng từng vế các bđt trên ta được

\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

7 tháng 6 2019

\(VT\leΣ\frac{1}{a^2+b^2+1}\le\frac{a^2+b^2+c^2+6}{\left(a+b+c\right)^2}\le\frac{\left(Σa\right)^2}{\left(Σa\right)^2}=1=VP\)

8 tháng 6 2019

Bạn giải rõ ra được không

NV
11 tháng 6 2020

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(z+x\right)+xyz}\)

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

29 tháng 1 2020

Ta có: \(ab+bc+ca=abc\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)

\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)

Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)

\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)

Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)

Chứng minh tương tự ta được:

\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)

\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)

Cộng vế với vế:

\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)

29 tháng 4 2021

#https://olm.vn/hoi-dap/detail/203085493090.html

Bạn tham khảo ạ

NV
25 tháng 4 2020

Ta có: \(x^4+y^4\ge\frac{1}{2}\left(x^2+y^2\right)^2=\frac{1}{2}\left(x^2+y^2\right)\left(x^2+y^2\right)\ge xy\left(x^2+y^2\right)\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x\right)+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(z+x\right)+xyz}\)

\(VT\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh