Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt lần lượt x=a+b ; y=b+c; z=c+a
Thì ta có: a=\(\dfrac{x+z-y}{2}\);b=\(\dfrac{x+y-x}{2}\);c=\(\dfrac{y+z-x}{2}\)
Ráp vào BT ban đầu ta có:
\(\dfrac{z+x-y}{2y}\)+\(\dfrac{x+y-z}{2z}\)+\(\dfrac{y+z+x}{2x}\)=\(\dfrac{x+z-y}{\dfrac{2}{ }y}+\dfrac{x+y-z}{\dfrac{2}{z}}+\dfrac{y+z-x}{\dfrac{2}{x}}\)
Đến đây bạn đặt \(\dfrac{1}{2}\) chung ở vế trái sau đó chuyển vế là tính được nha
\(\hept{\begin{cases}a+ab+b=3\\b+bc+c=8\\c+ca+a=15\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}a+ab+b+1=4\\b+bc+c+1=9\\c+ca+a+1=16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+1\right)\left(b+1\right)=4\\\left(b+1\right)\left(c+1\right)=9\\\left(c+1\right)\left(a+1\right)=16\end{cases}}\) \(\left(1\right)\)
Nhân vế với vế \(\Rightarrow\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2=\left(24^2\right)\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)\(\left(2\right)\)
Chia vế với vế của \(\left(2\right)\)cho lần lượt các pt của \(\left(1\right)\), ta được :
\(\hept{\begin{cases}a+1=\frac{8}{3}\\b+1=\frac{3}{2}\\c+1=6\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{1}{2}\\c=5\end{cases}}\)
\(\Rightarrow a+b+c=\frac{43}{6}\)
Các sô thực dương là j vậy bạn
các số thực dương là các số > 0 ( kể cả phân số , số thập phân , số vô tỉ )