Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c=3\Rightarrow a^2+b^2+c^2\ge3\)
Theo BĐT AM - GM ta có :
\(a^4+b^2\ge2a^2b\)
\(b^4+c^2\ge2b^2c\)
\(c^4+a^2\ge2c^2a\)
\(2a^2b^2+2a^2\ge4a^2b\)
\(2b^2c^2+2b^2\ge4b^2c\)
\(2c^2a^2+2c^2\ge4c^2a\)
Cộng từng vế BĐT ta được :
\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)
\(\Rightarrow a^2b+b^2c+c^2a\le\dfrac{3^2+3^2}{6}=3\)
Theo BĐT Cauchy schwarz dưới dạng en-gel ta có :
\(VT\ge\dfrac{9}{6+a^2b+b^2c+c^2a}=\dfrac{9}{9}=1\)
Dấu bằng xảy ra khi \(a=b=c=1\)
Viết lại BĐT:\(\dfrac{a^2b}{a^2b+2}+\dfrac{b^2c}{b^2c+2}+\dfrac{c^2a}{c^2a+2}\le1\)
Áp dụng BĐT AM-GM:
\(VT\le\sum\dfrac{a^2b}{3\sqrt[3]{a^4b^2}}=\dfrac{1}{3}\left(\sqrt[3]{a^2b}+\sqrt[3]{b^2c}+\sqrt[3]{c^2a}\right)\)
\(\le\dfrac{1}{9}\left(3a+3b+3c\right)=1\)
Suy ra đpcm
* Vì \(a,b\ge1\)nên \(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\)
Một cách tương tự: \(bc+1\ge b+c;ca+1\ge c+a\)
Với mọi số thực \(a\ge1\) ta luôn có: \(\left(a-1\right)^2\ge0\Leftrightarrow a^2\ge2a-1\Leftrightarrow\frac{1}{2a-1}\ge\frac{1}{a^2}\)
Tương tự: \(\frac{1}{2b-1}\ge\frac{1}{b^2};\frac{1}{2c-1}\ge\frac{1}{c^2}\)
Từ đó suy ra \(VT\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{4ab}{ab+1}+\frac{4bc}{bc+1}+\frac{4ca}{ca+1}\)\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+4-\frac{4}{ab+1}+4-\frac{4}{bc+1}+4-\frac{4}{ca+1}\)\(\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}-\frac{4}{ab+1}-\frac{4}{bc+1}-\frac{4}{ca+1}+12\)\(\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}-\frac{4}{a+b}-\frac{4}{b+c}-\frac{4}{c+a}+12\)\(=\left(\frac{2}{a+b}-1\right)^2+\left(\frac{2}{b+c}-1\right)^2+\left(\frac{2}{c+a}-1\right)^2+9\ge9\)
Đẳng thức xảy ra khi a = b = c = 1
Thử với \(a=b=c=0.1\), BĐT trở thành \(\dfrac{1}{10}\ge1\Rightarrow\) đề sai
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\\\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)+\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\)
\(\Rightarrow VT\le\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{bc}{4\left(a+c\right)}+\dfrac{ab}{4\left(a+c\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)
\(\Rightarrow VT\le\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{bc+ab}{4\left(a+c\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{b\left(c+a\right)}{4\left(a+c\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)
\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)
\(\Leftrightarrow\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}+\dfrac{ab}{a+b+2c}\le\dfrac{a+b+c}{4}\) ( đpcm )
Áp dụng BĐT cauchy-schwarz:
\(\sum\dfrac{a^4b}{2a+b}=\sum\dfrac{a^4b^2}{2ab+b^2}\ge\dfrac{\left(a^2b+b^2c+c^2a\right)^2}{\left(a+b+c\right)^2}\)
giờ ta chỉ cần có:\(a^2b+b^2c+c^2a\ge a+b+c\)
Áp dụng AM-GM:
\(a^2b+\dfrac{1}{b}\ge2a\)..tương tự ,ta suy ra:
\(a^2b+b^2c+c^2a\ge2\left(a+b+c\right)-\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)(*)
Theo giả thiết: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3\)
Dễ dàng suy ra được \(a+b+c\ge3\) ( từ BĐT \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\))
theo đó thì \(a+b+c\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Nên từ (*) ta có đpcm.
Dấu = xảy ra khi a=b=c=1
Lời giải:
Ta có: \(a^2b+b^2c+c^2a\geq \frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)
\(\Leftrightarrow (a^2b+b^2c+c^2a)(1+2a^2b^2c^2)\geq 9a^2b^2c^2\)
\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)(*)\)
--------------------------
Áp dụng BĐT AM-GM ta có:
\(a^2b+a^4b^3c^2+a^3b^2c^4\geq 3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)
\(b^2c+a^2b^4c^3+a^4b^3c^2\geq 3a^2b^3c^2\)
\(c^2a+a^3b^2c^4+a^2b^4c^3\geq 3a^2b^2c^3\)
Cộng theo vế:
\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\geq 3a^2b^2c^2(a+b+c)\)
Vậy $(*)$ đúng
Do đó ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)
áp dụng BDT CAUCHY SCHAWRZ
\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)
\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)
cái chỗ bđt cauchy là bđt gì bạn có thể ghi cụ thể nó ra được ko ạ