\(\frac{a+b-c}{c}=\frac{a-b+c}{b}\)=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

Áp dụng t/c dãy tỷ số bằng nhau có

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự có \(a+c=2b;b+c=2a\)

\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a.b.c}=\frac{2c.2a.2b}{a.b.c}=8\)

7 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có dãy tỉ lệ thức trên bằng:

\(=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a+c-b=b\\b+c-a=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}}\hept{\begin{cases}a+b+c=3c\\a+b+c=3b\\a+b+c=3a\end{cases}\Rightarrow3a=3b=3c\Rightarrow a=b=c}\)

 Thay vào M, ta có:

\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(a+a\right)\left(b+b\right)\left(c+c\right)}{abc}=\frac{2a.2b.2c}{abc}=2.2.2=8\)

2 tháng 11 2018

DÙng tính chất dãy tỉ số bằng nhau là ra nhé 

3 tháng 11 2018

\(\frac{a+b-c}{a}=\frac{a-b+c}{b}=\frac{-a+b+c}{c}=\frac{\left(a+b-c\right)+\left(a-b+c\right)+\left(-a+b+c\right)}{a+b+c}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{\left(a-a+a\right)-\left(c-c+c\right)+\left(b-b+b\right)}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\)\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{3.2a}{a^3}=\frac{6a}{a^3}=\frac{6}{a^2}\)

1 tháng 1 2019

\(Tacó\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

\(Taco:\)

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b+a+c+b+c-a-b-c}{a+b+c}=1\)

\(\Rightarrow a+b=2c;b+c=2a;c+a=2b\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{2c.2c.2c}{c^3}=8\)

Hk tốt,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhé

19 tháng 3 2018

\(\frac{a-b+c}{2b}=\frac{c-a+b}{2a}=\frac{a-c+b}{2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

=> 2a-2b+2c=2b <=> a+c=2b. Chia cả 2 vế cho c ta được: \(1+\frac{a}{c}=\frac{2b}{c}\)

Tương tự: \(1+\frac{c}{b}=\frac{2a}{b}\) và \(1+\frac{b}{a}=\frac{2c}{a}\)

=> \(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)=\frac{2a}{b}.\frac{2c}{a}.\frac{2b}{c}=\frac{8.abc}{abc}=8\)

Đáp số: 8

19 tháng 3 2018

tại sao 2a-2b+2c=2b lại suy ra a+c=2b vậy bạn

15 tháng 1 2017

Đặt \(\frac{b+c-a}{c}=\frac{a+b+c}{b}=\frac{b-c+a}{a}=k\)

\(\Rightarrow\hept{\begin{cases}b+c-a=ck\\a+b+c=bk\\b-c+a=ak\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2b=k\left(a+c\right)\left(1\right)\\2c=k\left(b-a\right)\left(2\right)\\2b+2c=b\left(b+c\right)\Rightarrow k=2\end{cases}}\)

Thay k=2 vào (1) và (2) : 

\(\hept{\begin{cases}2b=2\left(a+c\right)\\2c=2\left(b-a\right)\end{cases}\Rightarrow\hept{\begin{cases}b=a+c\\c=b-a\Rightarrow a=b-c\end{cases}}}\)

Vậy \(\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{abc}=\frac{\left(b-a\right)\left(c+b\right)\left(a+c\right)}{\left(b-c\right)\left(a+c\right)\left(b-a\right)}=\frac{b+c}{b-c}\)

3 tháng 3 2019

help me

=>\(\frac{a-b+c}{2b}+1=\frac{c-a+b}{2a}+1=\frac{a-c+b}{2c}+1\)

\(\Rightarrow\frac{a+b+c}{2b}=\frac{a+b+c}{2a}=\frac{a+b+c}{2c}\)

*TH1: nếu a+b+c=0 => a+b=-c; b+c=-a; c+a=-b

=>P=\(\left(\frac{b+c}{b}\right)\left(\frac{a+b}{a}\right)\left(\frac{c+a}{c}\right)\)

=\(\frac{-a}{b}.\frac{-c}{a}.\frac{-b}{c}=\frac{-\left(a.b.c\right)}{a.b.c}=-1\)

*TH2: Nếu a+b+c khác 0: thì a=b=c

Khi đó P=2.2.2=8

Vậy P= -1 hoặc 8

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)