K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

áp dụng tính chất day tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}\)=1

\(B=\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1+1+1=3\)

vậy B=3

28 tháng 7 2016

Theo t/ch DTSBN ta có

(a+b-c+a-b+c-a+b+c)/(c+b+a)

=(a+b+c)/(a+b+c)=1

28 tháng 7 2016

Ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(\Rightarrow\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

4 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

\(\Rightarrow\frac{a}{b}=1\Rightarrow a=b\); b/c = 1 => b = c

=> a = b = c

\(\Rightarrow M=\frac{a^{10}.b^7.c^{2000}}{b^{2017}}=\frac{b^{10}.b^7.b^{2000}}{b^{2017}}=1\)

4 tháng 9 2018

b) ta có: \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\)

tương tự như trên

ta có: b + c = 2a

a+c = 2b

\(\Rightarrow M=\frac{\left(a+b\right).\left(b+c\right).\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=2^3=8\)

24 tháng 7 2015

Super Man mà lại còn phải lên đây để hỏi bài à?