Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{abc}{\left(a+b\right).c}=\frac{abc}{a.\left(b+c\right)}=\frac{cab}{\left(c+a\right).b}\Leftrightarrow\frac{abc}{ac+bc}=\frac{abc}{ab+ac}=\frac{abc}{bc+ab}\)\(\Rightarrow ab+bc=ab+ac=bc+ab\)
\(\left(+\right)ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\)(do b # 0)
\(\left(+\right)ab+ac=bc+ab\Rightarrow ac=bc\Rightarrow a=b\)(do c # 0)
\(\Rightarrow a=b=c\)
Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
**** ^_^
áp dụng t/c DTSBN,ta có:
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)
\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)
\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)
từ (!) và (@) => đpcm
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
Ta có: \(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)
=>\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\)
=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
=>\(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\) (theo tính chất dãy tỉ số bằng nhau)
=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)(đpcm)
\(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2007.\frac{1}{90}\)
\(\Leftrightarrow\)\(\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\frac{223}{10}\)
\(\Leftrightarrow\)\(1+\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}=\frac{223}{10}\)
\(\Leftrightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{193}{10}\)
Vậy \(S=\frac{193}{10}\)
Chúc bạn học tốt ~
Cách 1: Nhân cả hai vế của đẳng thức cho \(a+b+c\)ta được:
\(\frac{a+b+c}{a+b}=\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{90}\)
\(\Rightarrow a+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{a+c}=\frac{2007}{90}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{2007}{90}-3=22,3-3=19,3\)
Bài 1:
Ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)
=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)
=> ab = 92
Bài 2:
Hữu hạn: -7/16; 2/125; -9/8
Vô hạn tuần hoàn: -5/3; 5/6; -3/11
Chúc bạn học tốt !!!
Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)
Vậy \(\overline{ab}=92\)
Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)
Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)
bài 1 :
a, A = 3|2x - 1| - 5 = 0
có 3|2x - 1| > 0
=> A > -5
xét A = -5 khi
|2x - 1| = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
vậy Min A = -5 khi x = 1/2
b, c, d, làm tương tự