Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!
bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là
Đáp án đề thi hsg toán 9 huyện Đức Thọ năm học 2018-2019 Đây là bài cuối của đề ak!
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) , ta được :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)
Cộng các BĐT trên theo vế : \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.
Cho a,b.c là 3 cạnh 1 tam giác. CMR: 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a +1 / b +1 / c
Áp dụng BĐT 1 / x +1 / y ≥ 4 / x+y , ta được :
1 / a+b−c + 1 / b+c−a ≥ 4 / 2b = 2 / b
1 / b+c−a +1 / c+a−b ≥ 4 / 2c = 2 / c
1 / a+b−c +1 / c+a−b ≥ 4 / 2a = 2 / a
Cộng các BĐT trên theo vế : 2( 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ) ≥ 2( 1 / a + 1 / b + 1 / c )
⇒ 1 / a+b−c + 1 / b+c−a + 1 / c+a−b ≥ 1 / a + 1 / b + 1 / c
Dấu "=" xảy ra khi a = b = c => Tam giác đó là tam giác đều.
C/m dạng tổng quát \(\frac{a^{n+1}}{b+c-a}+\frac{b^{n+1}}{c+a-b}+\frac{c^{n+1}}{a+b-c}\ge a^n+b^n+c^n\left(n\ge1\right)\)
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)
Suy ra \(\frac{a}{b+c-a}\ge\frac{b}{c+a-b}\ge\frac{c}{a+b-c}\)
Áp dụng BĐT Chebyshev ta có:
\(Σ\frac{a^{n+1}}{b+c-a}=Σa^n\cdot\frac{a}{b+c-a}\ge\frac{1}{3}Σa^n\cdotΣ\frac{a}{b+c-a}\geΣa^n\)
do a,b,c là 3 cạnh của 1 tam giác nên a,b,c > 0 ; p -a,p-b,p-c > 0
Áp dung BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có : \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
Tương tự : \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)
\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{2p-c-a}=\frac{4}{b}\)
Cộng từng vế 3 BĐT trên,ta được :
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)
\(\Rightarrow dpcm\)
Dấu "=" xảy ra khi a = b = c
Bài 1: Áp dụng BĐT Cauchy cho 3 số dương:
\(VT\ge3\sqrt[3]{\frac{\left(b+c\right)\left(c+a\right)\left(a+b\right)}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=6\) (đpcm)
Giải phần dấu "=" ra ta được a = b =c
Bài 2: Đặt \(a+b=x;b+c=y;c+a=z\)
Suy ra \(a=\frac{x-y+z}{2};b=\frac{x+y-z}{2};c=\frac{y+z-x}{2}\)
Suy ra cần chứng minh \(\frac{x-y+z}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x+z}{2y}+\frac{x+y}{2z}+\frac{y+z}{2x}\ge3\)
\(\Leftrightarrow\frac{x+z}{y}+\frac{x+y}{z}+\frac{y+z}{x}\ge6\)
Bài toán đúng theo kết quả câu 1.
Ta có : \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a}{b}+\frac{c}{a}+\frac{b}{c}\)
\(\Leftrightarrow b\left(\frac{1}{a}-\frac{1}{c}\right)+c\left(\frac{1}{b}-\frac{1}{a}\right)+a\left(\frac{1}{c}-\frac{1}{b}\right)\ge0\)
\(\Leftrightarrow\frac{b^2\left(c-a\right)}{abc}+\frac{c^2\left(a-b\right)}{abc}+\frac{a^2\left(b-c\right)}{abc}\ge0\)
\(\Leftrightarrow\frac{1}{abc}\left(b^2c-b^2a+c^2a-c^2b+a^2b-a^2c\right)\ge0\)
\(\Leftrightarrow\frac{bc\left(b-c\right)+ab\left(a-b\right)+ac\left(c-a\right)}{abc}\ge0\) (*)
Xét \(bc\left(b-c\right)+ab\left(a-b\right)+ac\left(c-a\right)=bc\left[-\left(c-a\right)-\left(a-b\right)\right]+ab\left(a-b\right)+ac\left(c-a\right)\)
\(=-bc\left(c-a\right)-bc\left(a-b\right)+ab\left(a-b\right)+ac\left(c-a\right)\)
\(=c\left(c-a\right)\left(a-b\right)+b\left(a-b\right)\left(a-c\right)=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
Vì \(a\ge b\ge c\) nên \(\left(a-b\right)\left(b-c\right)\left(a-c\right)\ge0\)
Suy ra (*) luôn đúng
Vậy ta có đpcm
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Đề bài sai rồi bạn
Phản ví dụ: tam giác đều có 3 cạnh bằng 0,5
Thay vào BĐT: \(\frac{0,5}{0,5}+\frac{0,5}{0,5}+\frac{0,5}{0,5}\ge\frac{1}{0,5}+\frac{1}{0,5}+\frac{1}{0,5}\)
\(\Leftrightarrow3\ge6\)
Thực chất chỉ cần nhìn vế trái và vế phải không cùng bậc là biết bài toán sai