K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

\(a,b,c\) là 3 cạnh của tam giác

Theo BĐT tam giác ta có: 

 \(\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}}\)  \(\Leftrightarrow\) \(\hept{\begin{cases}a^2< a\left(b+c\right)=ab+ac\left(1\right)\\b^2< b\left(c+a\right)=bc+ab\left(2\right)\\c^2< c\left(a+b\right)=ac+bc\left(3\right)\end{cases}}\)

Cộng theo vế (1), (2), (3)  ta có:

       \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) (đpcm)

19 tháng 3 2017

Vì a; b; c là độ dài 3 cạnh của 1 tam giác nên ta có : \(a+b>c;a+c>b;b+c>a\)

\(\Rightarrow c\left(a+b\right)>c.c\Rightarrow ac+bc>c^2\)

\(\Rightarrow b\left(a+c\right)>b.b\Rightarrow ab+bc>b^2\)

\(\Rightarrow a\left(b+c\right)>a.a\Rightarrow ab+ac>a^2\)

Cộng vế với vế ta được :

\(\left(ac+bc\right)+\left(ab+bc\right)+\left(ab+ac\right)>a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ac\right)>a^2+b^2+c^2\) (đpcm)

19 tháng 3 2017

Nhân 2 vế với a>0 ta có

ab+ac>a^2 (1)

bc+ba>b^2 (2)

ac+cb>c^2 (3)

Cộng hai vế của (1) , (2) , (3) ta được 2(ab+bc+ca)>a^2+b^2+c^2 ( đpcm)

14 tháng 9 2017

Vì a,b,c là độ dài 3 cạnh 1 tam giác nên:

\(a< b+c\Rightarrow a^2< ab+ac\)

Tương tự:

\(b^2< ab+bc;c^2< ac+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ac\right)\left(đpcm\right)\)

8 tháng 8 2017

Áp dụng bất đẳng thức tam giác ta có :

\(\Rightarrow\left\{{}\begin{matrix}b+c>a\\a+c>b\\a+b>c\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ab+ac>a^2\\ba+bc>b^2\\ca+cb>c^2\end{matrix}\right.\)

Cộng vế theo vế ta được : 2 (ab + ac + bc ) > a2 + b2 + c2

10 tháng 8 2017

Áp dụng BĐT tam giác ta được:

a + b > c

b + c > a

a + c > b

Suy ra: ac + bc > c^2 (1)

ab + ac > a^2 (2)

ab + bc > b^2 (3)

Lấy (1) + (2) + (3) ta được:

a^2 + b^2 + c^2 < 2(ab + bc + ca) (đpcm)

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

+)\(ab+bc+ca\le a^2+b^2+c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

+)\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-2\left(ab+bc+ca\right)< 0\)

\(\Leftrightarrow\left(a^2-ab-ca\right)+\left(b^2-ab-bc\right)+\left(c^2-bc-ca\right)< 0\)

\(\Leftrightarrow a\left(a-b-c\right)+b\left(b-a-c\right)+c\left(c-b-a\right)< 0\)(luôn đúng)

9 tháng 4 2018

Mình cảm ơn bạn nhé haha

26 tháng 10 2018

      \(\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2\right)^2-\left(2ab\right)^2\)

\(=\left[a^2+b^2-c^2-2ab\right]\left[a^2+b^2-c^2+2ab\right]\)

\(=\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]\)

\(=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)\)

Vì a,b,c là 3 cạnh của 1 tam giác nên theo bất đẳng thức tam giác, ta suy ra:

\(a-b-c< 0,a-b+c>0,a+b-c>0\)

Mặt khác \(a,b,c>0\Rightarrow a+b+c>0\)

\(\Rightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2=\left(a-b-c\right)\left(a-b+c\right)\left(a+b+c\right)\left(a+b-c\right)< 0\)

26 tháng 10 2018

\(VT=\left(a^2+b^2-c^2\right)^2-4a^2b^2\)

\(VT=\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)\)

\(VT=\left[\left(a-b\right)^2-c^2\right].\left[\left(a+b\right)^2-c^2\right]\)

\(VT=\left(a-b-c\right)\left(a-b+c\right)\left(a+b-c\right)\left(a+b+c\right)\)

Theo bđt tam giác ta có : 

\(a-b< c\)\(\Leftrightarrow\)\(a-b-c< 0\) \(\left(1\right)\)

\(a+b>c\)\(\Leftrightarrow\)\(a+b-c>0\) \(\left(2\right)\)

\(a+c>b\)\(\Leftrightarrow\)\(a-b+c>0\) \(\left(3\right)\)

\(a+b+c>0\) ( vì độ dài không có âm ) \(\left(4\right)\)

Từ (1), (2), (3) và (4) suy ra \(VT< 0\) ( vì tích gồm 1 số âm và 3 số dương ) 

Vậy với a, b, c là độ dài ba cạnh của một tam giác ta có \(\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\)

Chúc bạn học tốt ~ 

31 tháng 1 2017

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

31 tháng 1 2017

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2