K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 a # b # c # a, thỏa a/(b-c) + b/(c-a) + c/(a-b) = 0 
<=> a(c-a)(a-b) + b(a-b)(b-c) + c(b-c)(c-a) = 0 
<=> -a(a-b)(a-c) - b(b-a)(b-c) - c(c-a)(c-b) = 0 
<=> a(a-b)(a-c) + b(b-a)(b-c) + c(c-a)(c-b) = 0 (*) 
từ (*) ta thấy a, b, c đối xứng nên không giãm tính tổng quát giả sử: a > b > c 

* Nếu a, b, c đều không âm, giả thiết trên thành a > b > c ≥ 0 
(*) <=> (a-b)(a² - ac - b² + bc) + c(c-a)(c-b) = 0 
<=> (a-b)[(a+b)(a-b) -c(a-b)] + c(c-a)(c-b) = 0 
<=> (a-b)².(a+b-c) + c(a-c)(b-c) = 0 (1*) 

thấy b - c > 0 (do b > c) và a > 0 => a+b-c > 0 => (a-b)².(a+b-c) > 0 và c(a-c)(b-c) ≥ 0 
=> (a-b)².(a+b-c) + c(a-c)(b-c) > 0 mâu thuẩn với (1*) 

Vậy c < 0 (nói chung là trong a, b, c phải có số âm) 

* Nếu cả a, b, c đều không có số dương do giả thiết trên ta có: 0 ≥ a > b > c 

(*) <=> a(a-b)(a-c) + (b-c)(b² - ab - c² + ca) = 0 
<=> a(a-b)(a-c) + (b-c)[(b+c)(b-c) - a(b-c)] = 0 
<=> a(a-b)(a-c) + (b-c)².(b+c-a) = 0 (2*) 

a - b > 0; a - c > 0 => a(a-b)(a-c) ≤ 0 (vì a ≤ 0) 
và b < 0; c - a < 0 => b + c -a < 0 => (b-c)².(b+c-a) < 0 
=> a(a-b)(a-c) + (b-c)².(b+c-a) < 0 mẫu thuẩn với (2*) 

chứng tỏ trong a, b, c phải có số dương 

Tóm lại trong 3 số a, b, c phải có số dương và số âm 

4 tháng 8 2016

vk oi ck ne ket ban nhe

Từ: �2(�+�)=�2(�+�)⇔�2�−��2+��2−��2=0⇔��(�−�)+�(�−�)(�+�)=0.a2(b+c)=b2(a+c)⇔a2bab2+ca2−cb2=0⇔ab(ab)+c(ab)(a+b)=0.

⇔(�−�)(��+��+��)=0⇔(ab)(ab+bc+ac)=0. Do �≠�⇒��+��+��=0a=bab+bc+ac=0(1)

Mặt khác, xét hiệu:

�2(�+�)−�2(�+�)=��2−�2�+��2−�2�=��(�−�)+�(�−�)(�+�)=c2(a+b)−a2(b+c)=ac2−a2c+bc2−a2b=ac(ca)+b(ca)(c+a)=

=(�−�)(��+��+��)=0=(ca)(ac+bc+ab)=0

Do đó: �=�2(�+�)=�2(�+�)=2013.H=c2(a+b)=a2(b+c)=2013.