Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(tan3\alpha-tan2\alpha-tan\alpha=\left(tan3\alpha-tan\alpha\right)-tan2\alpha\)
\(=\left(\dfrac{sin3\alpha}{cos3\alpha}-\dfrac{sin\alpha}{cos\alpha}\right)-\dfrac{sin2\alpha}{cos2\alpha}\)\(=\dfrac{sin3\alpha cos\alpha-cos3\alpha sin\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=sin2\alpha.\left(\dfrac{1}{cos3\alpha cos\alpha}-\dfrac{1}{cos2\alpha}\right)\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos3\alpha cos\alpha}{cos3\alpha cos\alpha cos2\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-\dfrac{1}{2}\left(cos4\alpha+cos2\alpha\right)}{cos3\alpha cos2\alpha cos\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos4\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=\dfrac{sin2\alpha.2sin3\alpha.sin\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=tan3\alpha tan2\alpha tan\alpha\) (Đpcm).
b) \(\dfrac{4tan\alpha\left(1-tan^2\alpha\right)}{\left(1+tan^2\right)^2}=4tan\alpha\left(1-tan^2\alpha\right):\left(\dfrac{1}{cos^2\alpha}\right)^2\)
\(=4tan\alpha\left(1-tan^2\alpha\right)cos^4\alpha\)
\(=4\dfrac{sin\alpha}{cos\alpha}\left(1-\dfrac{sin^2\alpha}{cos^2\alpha}\right)cos^4\alpha\)
\(=4sin\alpha\left(cos^2\alpha-sin^2\alpha\right)cos\alpha\)
\(=4sin\alpha cos\alpha.cos2\alpha\)
\(=2.sin2\alpha.cos2\alpha=sin4\alpha\) (Đpcm).
a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).
b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
a)\(sin\left(\alpha+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(\alpha+\dfrac{\pi}{2}\right)\right]=cos\left(-\alpha\right)=cos\alpha\).
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-sinx\).
c) \(tan\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{sin\left(\alpha+\dfrac{\pi}{2}\right)}{cos\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{cos\alpha}{-sin\alpha}=-cot\alpha\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{cos\left(\alpha+\dfrac{\pi}{2}\right)}{sin\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{-sin\alpha}{cos\alpha}=-tan\alpha\).
1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)
\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)
\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )
b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)
\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)
\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)
\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)
\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )
c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)
\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)
\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)
\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)
\(VT=\dfrac{1-sin2x}{1+sin2x}\)
\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)
\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)
\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )
d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)
\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)
\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )
a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).
\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).
a) \(\dfrac{tan\alpha-tan\beta}{cot\beta-cot\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}-\dfrac{sin\beta}{cos\beta}}{\dfrac{cos\beta}{sin\beta}-\dfrac{cos\alpha}{sin\alpha}}\)
\(=\dfrac{\dfrac{sin\alpha cos\beta-cos\alpha sin\beta}{cos\alpha cos\beta}}{\dfrac{cos\beta sin\alpha-cos\alpha sin\beta}{sin\beta sin\alpha}}\)
\(=\dfrac{sin\beta sin\alpha}{cos\beta cos\alpha}=tan\alpha tan\beta\).
b) \(tan100^o+\dfrac{sin530^o}{1+sin640^o}=tan100^o+\dfrac{sin170^o}{1+sin280^o}\)
\(=-cot10^o+\dfrac{sin10^o}{1-sin80^o}\)\(=\dfrac{-cos10^o}{sin10^o}+\dfrac{sin10^o}{1-cos10^o}\)
\(=\dfrac{-cos10^o+cos^210^o+sin^210^o}{sin10^o\left(1-cos10^o\right)}\) \(=\dfrac{1-cos10^o}{sin10^o\left(1-cos10^o\right)}=\dfrac{1}{sin10^o}\) .
Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha,cos\alpha< 0;tan\alpha,cot\alpha< 0\).
\(cos\left(\alpha-\dfrac{\pi}{2}\right)=cos\left(\dfrac{\pi}{2}-\alpha\right)=sin\alpha< 0\).
\(sin\left(\dfrac{\pi}{2}+\alpha\right)=cos\alpha< 0\).
\(tan\left(\dfrac{3\pi}{2}-\alpha\right)=tan\left(\dfrac{3\pi}{2}-\alpha-2\pi\right)\)\(=tan\left(-\dfrac{\pi}{2}-\alpha\right)\)\(=-tan\left(\dfrac{\pi}{2}+\alpha\right)=cot\left(\alpha\right)>0\).
\(cot\left(\alpha+\pi\right)=cot\left(\alpha\right)>0\).
Câu a)
Ta sử dụng 2 công thức:
\(\bullet \tan (180-\alpha)=-\tan \alpha\)
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan A+\tan B+\tan C=\tan A+\tan B+\tan (180-A-B)\)
\(=\tan A+\tan B-\tan (A+B)=\tan A+\tan B-\frac{\tan A+\tan B}{1-\tan A.\tan B}\)
\(=(\tan A+\tan B)\left(1+\frac{1}{1-\tan A.\tan B}\right)=(\tan A+\tan B).\frac{-\tan A.\tan B}{1-\tan A.\tan B}\)
\(=-\tan A.\tan B.\frac{\tan A+\tan B}{1-\tan A.\tan B}=-\tan A.\tan B.\tan (A+B)\)
\(=\tan A.\tan B.\tan (180-A-B)\)
\(=\tan A.\tan B.\tan C=\text{VP}\)
Do đó ta có đpcm
Tam giác $ABC$ có ba góc nhọn nên \(\tan A, \tan B, \tan C>0\)
Áp dụng BĐT Cauchy ta có:
\(P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A.\tan B.\tan C}\)
\(\Leftrightarrow P=\tan A+\tan B+\tan C\geq 3\sqrt[3]{\tan A+\tan B+\tan C}\)
\(\Rightarrow P\geq 3\sqrt[3]{P}\)
\(\Rightarrow P^3\geq 27P\Leftrightarrow P(P^2-27)\geq 0\)
\(\Rightarrow P^2-27\geq 0\Rightarrow P\geq 3\sqrt{3}\)
Vậy \(P_{\min}=3\sqrt{3}\). Dấu bằng xảy ra khi \(\angle A=\angle B=\angle C=60^0\)
Câu b)
Ta sử dụng 2 công thức chính:
\(\bullet \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha.\tan \beta}\)
\(\bullet \tan (90-\alpha)=\frac{1}{\tan \alpha}\)
Áp dụng vào bài toán:
\(\text{VT}=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{B}{2}.\tan \frac{C}{2}+\tan \frac{C}{2}.\tan \frac{A}{2}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan \frac{C}{2}(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\tan (90-\frac{A+B}{2})(\tan \frac{A}{2}+\tan \frac{B}{2})\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\tan (\frac{A+B}{2})}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{\frac{\tan \frac{A}{2}+\tan \frac{B}{2}}{1-\tan \frac{A}{2}.\tan \frac{B}{2}}}\)
\(=\tan \frac{A}{2}.\tan \frac{B}{2}+1-\tan \frac{A}{2}.\tan \frac{B}{2}=1=\text{VP}\)
Ta có đpcm.
Cũng giống phần a, ta biết do ABC là tam giác nhọn nên
\(\tan A, \tan B, \tan C>0\)
Đặt \(\tan A=x, \tan B=y, \tan C=z\). Ta có: \(xy+yz+xz=1\)
Và \(T=x+y+z\)
\(\Rightarrow T^2=x^2+y^2+z^2+2(xy+yz+xz)\)
Theo hệ quả quen thuộc của BĐT Cauchy:
\(x^2+y^2+z^2\geq xy+yz+xz\)
\(\Rightarrow T^2\geq 3(xy+yz+xz)=3\)
\(\Rightarrow T\geq \sqrt{3}\Leftrightarrow T_{\min}=\sqrt{3}\)
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow \angle A=\angle B=\angle C=60^0\)