Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2
( c + a - b ) ( c + b - a ) = c2 - ( a - b ) 2 < c2
( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2
Nhân từng vế ba bất đẳng thức trên ta được
[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2 < [ abc ]2
Các biểu thức trong dấu ngoặc vuông đều dương nên
( b + c - a ) ( a + c - b ) ( a + b - c ) < abc
Xảy ra đẳng thức khi và chỉ khi a = b =c
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
Ta có : \(\frac{1}{x}\)+ \(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)
Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)
\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y
Áp dụng bất đẳng thức trên ta được:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0 bđt \(\Delta\))
Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế 3 bđt trên ta được:
2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ
Phần cuối bạn làm như thế này nhé:
C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)
CHÚC BẠN HỌC TỐT!
Ta có (x+y)2>0 <=>x2+y2>2xy
=>x2+2xy+y2>4xy
=>4xy<(x+y)2
=>xy<(x+y)2/4
Theo BDT tam giác ta có : a+b-c>0;b+c-a>0
Áp dụng BDT trên ta dc :
(a+b-c)(b+c-a)<(a+b-c+b+c-a)2/4=4b2/4=b2
(a+b-c)(c+a-b)<(a+b+c+a-b)2/4=a2
(b+c-a)(c+a-b)<(b+c-a+c+a-b)2/4=c2
=>(a+b-c)2(b+c-a)2(a+c-b)2=a2+b2+c2
=>abc> (b+c-a)(a+c-b)(a+b-c) (dpcm)
#)Giải :
Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^3\le a^2\end{cases}}\)
Nhân từng vế ba bđt trên ta được :
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\le abc\)
Hay \(abc\ge\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)
Xảy ra khi a = b = c
áp dụng bdt cosi cho 2 số dương ta có :
\(\left(b+c-a\right)+\left(a+c-b\right)\ge2\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\)
\(\Leftrightarrow\left[\left(b+c-a\right)+\left(a+c-b\right)\right]^2\ge4\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow c^2\ge\left(b+c-a\right)\left(a+c-b\right)\)(1)
tương tự ta có: \(a^2\ge\left(b+a-c\right)\left(c+a-b\right)\)(2)
\(b^2\ge\left(b+c-a\right)\left(b+a-c\right)\)(3)
từ (1) (2) (3) suy ra dpcm