K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

#)Giải :

Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^3\le a^2\end{cases}}\)

Nhân từng vế ba bđt trên ta được :

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\le abc\)

Hay \(abc\ge\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Xảy ra khi a = b = c

1 tháng 8 2019

áp dụng bdt cosi cho 2 số dương ta có :

\(\left(b+c-a\right)+\left(a+c-b\right)\ge2\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\)

\(\Leftrightarrow\left[\left(b+c-a\right)+\left(a+c-b\right)\right]^2\ge4\left(b+c-a\right)\left(a+c-b\right)\)

\(\Leftrightarrow c^2\ge\left(b+c-a\right)\left(a+c-b\right)\)(1)

tương tự ta có: \(a^2\ge\left(b+a-c\right)\left(c+a-b\right)\)(2)

\(b^2\ge\left(b+c-a\right)\left(b+a-c\right)\)(3)

từ (1) (2) (3) suy ra dpcm

5 tháng 6 2016

Ta có :

( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2

( c + a - b ) ( c + b  - a ) = c2 - ( a - b ) < c2

( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2

Nhân từng vế ba bất đẳng thức trên ta được

[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2  <  [ abc ]2

Các biểu thức trong dấu ngoặc vuông đều dương nên 

( b + c - a ) ( a + c - b ) ( a + b - c ) < abc

Xảy ra đẳng thức khi và chỉ khi a = b =c

27 tháng 1 2017

cô-s 3 số luôn a+b+c >= 3 nhân căn bậc ba (abc)

27 tháng 1 2017

sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)

rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong

15 tháng 3 2020

Ta có: \(VT-VP=\frac{\Sigma\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\ge0\)

Đẹp quá:3

14 tháng 2 2016

lên rùi nè nhanh lên

14 tháng 2 2016

em gửi rồi nè

30 tháng 3 2018

Ta có : \(\frac{1}{x}\)\(\frac{1}{y}\)\(\ge\)\(\frac{4}{xy}\)( với x,y dương)

Thật vậy: \(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\frac{4}{x+y}\)

\(\Leftrightarrow\frac{y+x}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) luôn đúng \(\forall\)x,y

Áp dụng bất đẳng thức trên ta được:

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(Vì a,b,c là 3 cạnh \(\Delta\)nên a+b-c > 0 và b+c-a > 0                                                                                                                                                                                                               bđt \(\Delta\))

Tương tự có: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{2}{a}\)

                       \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế 3 bđt trên ta được:

2(\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\)\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

CHÚC BẠN HỌC TỐT!

30 tháng 3 2018

Cái phần cuối mình up lên nhưng không được chắc là do giới hạn chữ

Phần cuối bạn làm như thế này nhé:

C/m tương tự:\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)

                         \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)

Cộng từng vế của 3 bđt trên ta được \(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

                                                        \(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(ĐFCM)

                

CHÚC BẠN HỌC TỐT!

5 tháng 5 2016

Ta có (x+y)2>0 <=>x2+y2>2xy

=>x2+2xy+y2>4xy

=>4xy<(x+y)2

=>xy<(x+y)2/4

Theo BDT tam giác ta có : a+b-c>0;b+c-a>0

Áp dụng BDT trên ta dc :

(a+b-c)(b+c-a)<(a+b-c+b+c-a)2/4=4b2/4=b2

(a+b-c)(c+a-b)<(a+b+c+a-b)2/4=a2

(b+c-a)(c+a-b)<(b+c-a+c+a-b)2/4=c2

=>(a+b-c)2(b+c-a)2(a+c-b)2=a2+b2+c2

=>abc> (b+c-a)(a+c-b)(a+b-c) (dpcm)