\(\frac{2017a}{b+c}=\frac{2017b}{a+c}=\frac{2017c}{a+b}\)Tính 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)

\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)

Do đó : 

\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được : 

\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I  : Số hữu tỉ. Số thực

22 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a}{2017a+b}=\frac{bk}{2017bk+b}=\frac{bk}{b.\left(2017k+1\right)}=\frac{k}{2017k+1}\) (1)

\(\frac{c}{2017c+d}=\frac{dk}{2017dk+d}=\frac{dk}{d.\left(2017k+1\right)}=\frac{k}{2017k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{2017a+b}=\frac{c}{2017c+d}\)

Vậy \(\frac{a}{2017a+b}=\frac{c}{2017c+d}\)

6 tháng 10 2018

ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có:

\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)

\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)

6 tháng 10 2018

\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)

\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)

\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)