\(\in\)R  và a, b, c \(\ne0\) thỏa mãn 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

b= ac => \(\frac{a}{b}=\frac{b}{c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{a+2007b}{b+2007c}\)

=> \(\left(\frac{a+2007b}{b+2007c}\right)^2=\frac{a+2007b}{b+2007c}.\frac{a+2007b}{b+2007c}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)

Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\)

 

10 tháng 3 2017

\(b^2=ac\Rightarrow\dfrac{b}{a}=\dfrac{c}{b}\)

Đặt :\(\dfrac{b}{a}=\dfrac{c}{b}=k\Rightarrow b=ak\)

\(c=bk\)

\(\Rightarrow c=akk=ak^2\)

VT\(=\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)

VP \(=\dfrac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}=\dfrac{\left(a+2007ak\right)^2}{\left(b+2007bk\right)^2}\)

\(=\dfrac{\left[a\left(1+2007k\right)\right]^2}{\left[b\left(1+2007k\right)\right]^2}=\dfrac{a^2\left(1+2007k\right)^2}{b^2\left(1+2007\right)^2}=\dfrac{a^2}{b^2}=\dfrac{a^2}{\left(ak^2\right)}=\dfrac{a^2}{a^2k^2}=\dfrac{1}{k^2}\)

\(\Rightarrow VT=VP\Rightarrow\dfrac{a}{b}=\dfrac{\left(a+2007b\right)^2}{\left(b+2007c\right)^2}\)

Ta co:\(b^2=ac\Leftrightarrow\frac{a}{b}=\frac{b}{c}\)

               \(=\frac{2007b}{2007c}=\frac{a+2007b}{b+2007c}\)

     \(\Rightarrow\left(\frac{a+2007b}{b+2007c}\right)^2=\left(\frac{a}{b}\right)^2=\frac{a}{b}\times\frac{b}{c}=\frac{a}{c}\)

          Vậy \(\frac{a}{c}=\left(\frac{a+2007b}{b+2007c}\right)^2\left(đpcm\right)\)

17 tháng 10 2018

\(ac=bb=>\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}\)

áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{2012b}{2012c}=\frac{a+2012b}{b+2012c}\)

\(=>\left(\frac{a}{b}\right)^2=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\)

vì \(\frac{a}{b}=\frac{b}{c}=>\left(\frac{a}{b}\right)^2=\frac{a.b}{b.c}=\frac{a}{c}\)

\(=>\frac{a}{c}=\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}\left(dpcm\right)\)