Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm.
Đẳng thức khi \(a=b=c\)
b) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)
(Luôn đúng)
Vậy ta có đpcm
Đẳng thức khi \(a=b=1\)
Các bài tiếp theo tương tự :v
g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)
i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)
Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm
j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=\frac{a^2+b^2+c^2}{abc}=\frac{3}{abc}\)(2)
\(a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow3\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow1\ge abc\Rightarrow3\le\frac{3}{abc}\)(1)
Từ (1) và (2) -> đpcm
Bài 1:
Sử dụng biến đổi tương đương. Ta có:
\(a^5+b^5\geq a^3b^2+a^2b^3\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)
\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)
Ta có đpcm.
Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)
Bài 2: Sử dụng kết quả bài 1:
\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)
\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)
Hoàn toàn tt:
\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)
Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)
\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
#https://olm.vn/hoi-dap/detail/203085493090.html
Bạn tham khảo ạ
vì \(a,b,c\in\left[0,1\right]\)\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow\left(1-a-b+ab\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-c-a+ac-b+bc+ab-abc\ge0\)
\(\Leftrightarrow a+b+c-\left(ab+bc+ac\right)\le1-abc\)
mặt khác : \(a.bc\ge0\)
\(\Rightarrow a+b+c-\left(ab+ac+bc\right)\le1-0=1\)
mà \(b,c\in\left[0.1\right]\Rightarrow b^2\le b;c^3\le c\)
vì vậy ta được điều phải chứng minh :
\(a+b^2+c^3-\left(ab+bc+ac\right)\le1\)
Vì \(b,c\in[0;1]\)
\(\Rightarrow b^2\le b\)
\(c^3\le c\)
Do đó : \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\) (1)
Và có : \(a+b+c-ab-bc-ca=\left(a-1\right).\left(b-1\right).\left(c-1\right)-abc+1\) (2)
Theo đề bài ta có : \(a,b,c\in[0;1]\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
và \(-ab\le0\)
Từ (2)
\(\Rightarrow a+b+c-ab-bc-ca\le1\) (3)
Từ (1) và (3)
\(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)( đpcm)